Schiff-Base System of Glutaraldehyde Crosslinked Chitosan-Algae-Montmorillonite Clay K10 Biocomposite: Adsorption Mechanism and Optimized Removal for Methyl Violet 2B Dye
Heren, chitosan (CH), algae (AL), and montmorillonite clay K10 (MK10) were used in the hydrothermal synthesis of a new Schiff-base system of glutaraldehyde-crosslinked chitosan-based biocomposite (CH-AL-MK10/GL) for the removal of a model cationic dye [MV (2B)] from aqueous environments. Various ana...
Published in: | JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS |
---|---|
Main Authors: | , , , |
Format: | Article; Early Access |
Language: | English |
Published: |
SPRINGER
2024
|
Subjects: | |
Online Access: | https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001287406700003 |
author |
Sando Muna Sarhan; Farhan Ahlam M.; Jawad Ali H. |
---|---|
spellingShingle |
Sando Muna Sarhan; Farhan Ahlam M.; Jawad Ali H. Schiff-Base System of Glutaraldehyde Crosslinked Chitosan-Algae-Montmorillonite Clay K10 Biocomposite: Adsorption Mechanism and Optimized Removal for Methyl Violet 2B Dye Polymer Science |
author_facet |
Sando Muna Sarhan; Farhan Ahlam M.; Jawad Ali H. |
author_sort |
Sando |
spelling |
Sando, Muna Sarhan; Farhan, Ahlam M.; Jawad, Ali H. Schiff-Base System of Glutaraldehyde Crosslinked Chitosan-Algae-Montmorillonite Clay K10 Biocomposite: Adsorption Mechanism and Optimized Removal for Methyl Violet 2B Dye JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS English Article; Early Access Heren, chitosan (CH), algae (AL), and montmorillonite clay K10 (MK10) were used in the hydrothermal synthesis of a new Schiff-base system of glutaraldehyde-crosslinked chitosan-based biocomposite (CH-AL-MK10/GL) for the removal of a model cationic dye [MV (2B)] from aqueous environments. Various analytical methods were employed to evaluate the characteristics of the synthesized biocomposite (e.g., BET surface analysis method, elemental analysis, FTIR, SEM-EDX, XRD, and point of zero charge). The key adsorption parameters (CH-AL-MK10/GL dose, pH, and time) were optimized using the BBD model and the optimum adsorption (%) value of 86.4% was achieved at the following operating conditions: CH-AL-MK10/GL dose: 0.99 g/100 mL, pH: 8.3, time: 418 min and a quadratic model was generated for predicting the dye removal values based on the adsorption conditions. The adsorption equilibrium data revealed great compatibility with the pseudo-second order kinetic model and Langmuir and Freundlich isotherm models, achieving a maximum adsorption capacity of 98.3 mg/g at 25 degrees C. Hence, the adsorption of MV (2B) by CH-AL-MK10/GL was through chemisorption in an initially monolayered fashion which then proceeds to a multilayered model after the surface layer reaches a saturated state. The results of all the characterization methods as well as the adsorption equilibrium studies were utilized to determine the possible interactions between the CH-AL-MK10/GL surface and MV (2B) dye molecules and the electrostatic forces, hydrogen bonding, Yoshida hydrogen bonding and n- pi stacking interactions were concluded to be responsible for the adsorption process. SPRINGER 1574-1443 1574-1451 2024 10.1007/s10904-024-03295-x Polymer Science WOS:001287406700003 https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001287406700003 |
title |
Schiff-Base System of Glutaraldehyde Crosslinked Chitosan-Algae-Montmorillonite Clay K10 Biocomposite: Adsorption Mechanism and Optimized Removal for Methyl Violet 2B Dye |
title_short |
Schiff-Base System of Glutaraldehyde Crosslinked Chitosan-Algae-Montmorillonite Clay K10 Biocomposite: Adsorption Mechanism and Optimized Removal for Methyl Violet 2B Dye |
title_full |
Schiff-Base System of Glutaraldehyde Crosslinked Chitosan-Algae-Montmorillonite Clay K10 Biocomposite: Adsorption Mechanism and Optimized Removal for Methyl Violet 2B Dye |
title_fullStr |
Schiff-Base System of Glutaraldehyde Crosslinked Chitosan-Algae-Montmorillonite Clay K10 Biocomposite: Adsorption Mechanism and Optimized Removal for Methyl Violet 2B Dye |
title_full_unstemmed |
Schiff-Base System of Glutaraldehyde Crosslinked Chitosan-Algae-Montmorillonite Clay K10 Biocomposite: Adsorption Mechanism and Optimized Removal for Methyl Violet 2B Dye |
title_sort |
Schiff-Base System of Glutaraldehyde Crosslinked Chitosan-Algae-Montmorillonite Clay K10 Biocomposite: Adsorption Mechanism and Optimized Removal for Methyl Violet 2B Dye |
container_title |
JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS |
language |
English |
format |
Article; Early Access |
description |
Heren, chitosan (CH), algae (AL), and montmorillonite clay K10 (MK10) were used in the hydrothermal synthesis of a new Schiff-base system of glutaraldehyde-crosslinked chitosan-based biocomposite (CH-AL-MK10/GL) for the removal of a model cationic dye [MV (2B)] from aqueous environments. Various analytical methods were employed to evaluate the characteristics of the synthesized biocomposite (e.g., BET surface analysis method, elemental analysis, FTIR, SEM-EDX, XRD, and point of zero charge). The key adsorption parameters (CH-AL-MK10/GL dose, pH, and time) were optimized using the BBD model and the optimum adsorption (%) value of 86.4% was achieved at the following operating conditions: CH-AL-MK10/GL dose: 0.99 g/100 mL, pH: 8.3, time: 418 min and a quadratic model was generated for predicting the dye removal values based on the adsorption conditions. The adsorption equilibrium data revealed great compatibility with the pseudo-second order kinetic model and Langmuir and Freundlich isotherm models, achieving a maximum adsorption capacity of 98.3 mg/g at 25 degrees C. Hence, the adsorption of MV (2B) by CH-AL-MK10/GL was through chemisorption in an initially monolayered fashion which then proceeds to a multilayered model after the surface layer reaches a saturated state. The results of all the characterization methods as well as the adsorption equilibrium studies were utilized to determine the possible interactions between the CH-AL-MK10/GL surface and MV (2B) dye molecules and the electrostatic forces, hydrogen bonding, Yoshida hydrogen bonding and n- pi stacking interactions were concluded to be responsible for the adsorption process. |
publisher |
SPRINGER |
issn |
1574-1443 1574-1451 |
publishDate |
2024 |
container_volume |
|
container_issue |
|
doi_str_mv |
10.1007/s10904-024-03295-x |
topic |
Polymer Science |
topic_facet |
Polymer Science |
accesstype |
|
id |
WOS:001287406700003 |
url |
https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001287406700003 |
record_format |
wos |
collection |
Web of Science (WoS) |
_version_ |
1809679297474985984 |