Sustained release microneedle patch for pronounced systemic delivery of doxazosin mesylate

Introduction: Microneedle patch is one of the fascinating drug delivery approaches that offers low invasiveness and a painless physical application to enhance the delivery of micro and macro-molecules into the skin. Methods: Variable contents of chitosan and polyvinyl alcohol were used for the devel...

Full description

Bibliographic Details
Published in:BIOIMPACTS
Main Authors: Anwar, Imran; Zafar, Nadiah; Mahmood, Asif; Zulcaif; Latif, Riffat
Format: Article; Early Access
Language:English
Published: TABRIZ UNIV MEDICAL SCIENCES & HEALTH SERVICES 2024
Subjects:
Online Access:https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001283925300001
author Anwar
Imran; Zafar
Nadiah; Mahmood
Asif; Zulcaif; Latif
Riffat
spellingShingle Anwar
Imran; Zafar
Nadiah; Mahmood
Asif; Zulcaif; Latif
Riffat
Sustained release microneedle patch for pronounced systemic delivery of doxazosin mesylate
Pharmacology & Pharmacy
author_facet Anwar
Imran; Zafar
Nadiah; Mahmood
Asif; Zulcaif; Latif
Riffat
author_sort Anwar
spelling Anwar, Imran; Zafar, Nadiah; Mahmood, Asif; Zulcaif; Latif, Riffat
Sustained release microneedle patch for pronounced systemic delivery of doxazosin mesylate
BIOIMPACTS
English
Article; Early Access
Introduction: Microneedle patch is one of the fascinating drug delivery approaches that offers low invasiveness and a painless physical application to enhance the delivery of micro and macro-molecules into the skin. Methods: Variable contents of chitosan and polyvinyl alcohol were used for the development of doxazosin mesylate containing sustained release microneedle patches via solvent casting technique. The prepared patches were evaluated for microscopic evaluation, mechanical strength, drug loading (%) and Fourier transform infrared spectroscopy (FTIR) etc. The skin penetration study was performed by using pig ear skin and results were captured through confocal microscopy. Ex-vivo release study and pharmacokinetic evaluation were also performed. Results: Sharp needle tips with a height of 600 mu m and a base of 200 mu m were confirmed through microscopic examination. Optimized formulation (SRF-6) exhibited loading of 92.11% doxazosin mesylate with appreciable strength up to 1.94N force. Ex-vivo release studies revealed 87.24% release within 48 hours. Moreover, the pharmacokinetic parameters in case of optimized patch formulation (SRF-6) were markedly improved i.e. MRT (19.46 h), AUC (57.12 mu g.h /mL), C max (2.16 mu g /mL), t max (10.10 h) and t 1/2 (6.32 h) as compared to commercially available tablet. Biocompatibility of the developed patches was validated from skin irritation studies. Conclusion: Results confirmed the successful fabrication of microneedle patch having sufficient strength and effective penetration ability into the skin to ensure controlled release of incorporated drug for the intended duration. It can be employed as an efficient carrier system for other therapeutics those are prone to bioavailability issues due to first pass effect after their oral administration.
TABRIZ UNIV MEDICAL SCIENCES & HEALTH SERVICES
2228-5652
2228-5660
2024


10.34172/bi.30257
Pharmacology & Pharmacy

WOS:001283925300001
https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001283925300001
title Sustained release microneedle patch for pronounced systemic delivery of doxazosin mesylate
title_short Sustained release microneedle patch for pronounced systemic delivery of doxazosin mesylate
title_full Sustained release microneedle patch for pronounced systemic delivery of doxazosin mesylate
title_fullStr Sustained release microneedle patch for pronounced systemic delivery of doxazosin mesylate
title_full_unstemmed Sustained release microneedle patch for pronounced systemic delivery of doxazosin mesylate
title_sort Sustained release microneedle patch for pronounced systemic delivery of doxazosin mesylate
container_title BIOIMPACTS
language English
format Article; Early Access
description Introduction: Microneedle patch is one of the fascinating drug delivery approaches that offers low invasiveness and a painless physical application to enhance the delivery of micro and macro-molecules into the skin. Methods: Variable contents of chitosan and polyvinyl alcohol were used for the development of doxazosin mesylate containing sustained release microneedle patches via solvent casting technique. The prepared patches were evaluated for microscopic evaluation, mechanical strength, drug loading (%) and Fourier transform infrared spectroscopy (FTIR) etc. The skin penetration study was performed by using pig ear skin and results were captured through confocal microscopy. Ex-vivo release study and pharmacokinetic evaluation were also performed. Results: Sharp needle tips with a height of 600 mu m and a base of 200 mu m were confirmed through microscopic examination. Optimized formulation (SRF-6) exhibited loading of 92.11% doxazosin mesylate with appreciable strength up to 1.94N force. Ex-vivo release studies revealed 87.24% release within 48 hours. Moreover, the pharmacokinetic parameters in case of optimized patch formulation (SRF-6) were markedly improved i.e. MRT (19.46 h), AUC (57.12 mu g.h /mL), C max (2.16 mu g /mL), t max (10.10 h) and t 1/2 (6.32 h) as compared to commercially available tablet. Biocompatibility of the developed patches was validated from skin irritation studies. Conclusion: Results confirmed the successful fabrication of microneedle patch having sufficient strength and effective penetration ability into the skin to ensure controlled release of incorporated drug for the intended duration. It can be employed as an efficient carrier system for other therapeutics those are prone to bioavailability issues due to first pass effect after their oral administration.
publisher TABRIZ UNIV MEDICAL SCIENCES & HEALTH SERVICES
issn 2228-5652
2228-5660
publishDate 2024
container_volume
container_issue
doi_str_mv 10.34172/bi.30257
topic Pharmacology & Pharmacy
topic_facet Pharmacology & Pharmacy
accesstype
id WOS:001283925300001
url https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001283925300001
record_format wos
collection Web of Science (WoS)
_version_ 1809679297927970816