Driver Drowsiness Detection Using Vision Transformer
This work explores the capability of the new neural network architecture called Vision Transformer (ViT) in addressing prevalent issue of road accidents attributed to drowsy driving. The development of the ViT model involves the use of a pre-trained ViT_B_16 model with initial weight from IMAGENET1K...
出版年: | 2024 IEEE 14TH SYMPOSIUM ON COMPUTER APPLICATIONS & INDUSTRIAL ELECTRONICS, ISCAIE 2024 |
---|---|
主要な著者: | Azmi, Muhammad Muizuddin Bin Mohamad; Zaman, Fadhlan Hafizhelmi Kamaru |
フォーマット: | Proceedings Paper |
言語: | English |
出版事項: |
IEEE
2024
|
主題: | |
オンライン・アクセス: | https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001283898700030 |
類似資料
-
Comparison of the pediatric vision screening program in 18 countries across five continents
著者:: 2-s2.0-85071644688
出版事項: (2019) -
Enhancing Aviation Safety: A Deep Learning-Based Fault Detection System for Jet Engines
著者:: Suliman, 等
出版事項: (2024) -
Investigation Towards the Needs of Affective Design Principles of Mathematics Mobile Application for Low Vision Learners
著者:: 2-s2.0-85123437883
出版事項: (2021) -
Big Data Analysis on Emotional Drivers and Strategies for Slow Fashion Consumption
著者:: Suxia, 等
出版事項: (2025) -
Improving transformer failure classification on imbalanced DGA data using data-level techniques and machine learning
著者:: Azmi, 等
出版事項: (2025)