The Split Equality Fixed-Point Problem and Its Applications
It is generally known that in order to solve the split equality fixed-point problem (SEFPP), it is necessary to compute the norm of bounded and linear operators, which is a challenging task in real life. To address this issue, we studied the SEFPP involving a class of quasi-pseudocontractive mapping...
Published in: | AXIOMS |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Published: |
MDPI
2024
|
Subjects: | |
Online Access: | https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001276766000001 |
Summary: | It is generally known that in order to solve the split equality fixed-point problem (SEFPP), it is necessary to compute the norm of bounded and linear operators, which is a challenging task in real life. To address this issue, we studied the SEFPP involving a class of quasi-pseudocontractive mappings in Hilbert spaces and constructed novel algorithms in this regard, and we proved the algorithms' convergences both with and without prior knowledge of the operator norm for bounded and linear mappings. Additionally, we gave applications and numerical examples of our findings. A variety of well-known discoveries revealed in the literature are generalized by the findings presented in this work. |
---|---|
ISSN: | 2075-1680 |
DOI: | 10.3390/axioms13070460 |