A state-of-the-art review of metal oxide nanoflowers for wastewater treatment: Dye removal

Dye wastewater consists of high solids concentrations, heavy metals, minor contaminants, dissolved chemical oxygen demand, and microorganisms. Nanoflowers are nanoparticles that resemble flowers when viewed at a microscopic level. Inorganic metal oxide nanoflowers have been discovered to be a potent...

Full description

Bibliographic Details
Published in:ENVIRONMENTAL RESEARCH
Main Authors: Lee, Sing Ying; Tan, Yie Hua; Lau, Sie Yon; Mubarak, Nabisab Mujawar; Tan, Yee Yong; Tan, Inn Shi; Lee, Yeong Huei; Ibrahim, Mohd Lokman; Karri, Rama Rao; Khalid, Mohammad; Chan, Yen San; Adeoye, John Busayo
Format: Review
Language:English
Published: ACADEMIC PRESS INC ELSEVIER SCIENCE 2024
Subjects:
Online Access:https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001264102800001
Description
Summary:Dye wastewater consists of high solids concentrations, heavy metals, minor contaminants, dissolved chemical oxygen demand, and microorganisms. Nanoflowers are nanoparticles that resemble flowers when viewed at a microscopic level. Inorganic metal oxide nanoflowers have been discovered to be a potential source for overcoming this situation. Their flower-like features give them a higher surface area to volume ratio and porosity structure, which can absorb a significant amount of dye. The metal oxide nanoflower synthesized from different synthesis methods is used to compare which one is cost-effective and capable of generating a large scale of nanoflower. This review has demonstrated outstanding dye removal efficiency by applying inorganic nanoflowers to dye removal. Since both adsorption and photocatalytic reactions enhance the dye degradation process, complete dye degradation could be achieved. Meanwhile, the inorganic metal oxide nanoflowers' exemplary reusability characteristics with negligible performance drop further prove that this approach is highly sustainable and may help to save costs. This review has proven the momentum of obtaining high dye removal efficiency in wastewater treatment to conclude that the metal oxide nanoflower study is worth researching.
ISSN:0013-9351
1096-0953
DOI:10.1016/j.envres.2024.119448