Blended tropical pineapple peel and crown fruit wastes as precursor for activated carbon by microwave-assisted H3PO4 activation: process optimization for methylene blue dye removal
A blended tropical pineapple (Ananas comosus) peel and crown (PPC) fruit wastes were utilized as an alternate source material for producing mesoporous-activated carbon through H3PO4 activation employing microwave pyrolysis. Diverse techniques including BET, XRD, FTIR, and SEM-EDX were employed to ch...
Published in: | BIOMASS CONVERSION AND BIOREFINERY |
---|---|
Main Authors: | , , , , , |
Format: | Article; Early Access |
Language: | English |
Published: |
SPRINGER HEIDELBERG
2024
|
Subjects: | |
Online Access: | https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001263315800004 |
Summary: | A blended tropical pineapple (Ananas comosus) peel and crown (PPC) fruit wastes were utilized as an alternate source material for producing mesoporous-activated carbon through H3PO4 activation employing microwave pyrolysis. Diverse techniques including BET, XRD, FTIR, and SEM-EDX were employed to characterize the PPC-AC. The efficacy of PPC-AC as an adsorbent was assessed for removing (MB) cationic dye from an aqueous medium. Optimization of adsorption process parameters-adsorbent dose (A: 0.02-0.1 g/100 mL), solution pH (B: 4-10), and contact time (C: 40-360 min)-was conducted using RSM-BBD. The adsorption process adhered to pseudo-second-order (PSO) kinetics and Freundlich isotherm models. PPC-AC demonstrated a peak adsorption capacity of 39.5 mg/g for MB dye. The adsorption mechanism of MB dye was attributed to various interactions including electrostatic, H-bonding, and pi-pi interaction. This investigation showcases the efficacy of a renewable biomass resource for generating activated carbon with advantageous adsorption properties for cationic dyes. |
---|---|
ISSN: | 2190-6815 2190-6823 |
DOI: | 10.1007/s13399-024-05880-z |