DenseHillNet: a lightweight CNN for accurate classification of natural images
The detection of natural images, such as glaciers and mountains, holds practical applications in transportation automation and outdoor activities. Convolutional neural networks (CNNs) have been widely employed for image recognition and classification tasks. While previous studies have focused on fru...
Published in: | PEERJ COMPUTER SCIENCE |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Published: |
PEERJ INC
2024
|
Subjects: | |
Online Access: | https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001223362100002 |
author |
Saqib Sheikh Muhammad; Asghar Muhammad Zubair; Iqbal Muhammad; Al-Rasheed Amal; Khan Muhammad Amir; Ghadi Yazeed; Mazhar Tehseen |
---|---|
spellingShingle |
Saqib Sheikh Muhammad; Asghar Muhammad Zubair; Iqbal Muhammad; Al-Rasheed Amal; Khan Muhammad Amir; Ghadi Yazeed; Mazhar Tehseen DenseHillNet: a lightweight CNN for accurate classification of natural images Computer Science |
author_facet |
Saqib Sheikh Muhammad; Asghar Muhammad Zubair; Iqbal Muhammad; Al-Rasheed Amal; Khan Muhammad Amir; Ghadi Yazeed; Mazhar Tehseen |
author_sort |
Saqib |
spelling |
Saqib, Sheikh Muhammad; Asghar, Muhammad Zubair; Iqbal, Muhammad; Al-Rasheed, Amal; Khan, Muhammad Amir; Ghadi, Yazeed; Mazhar, Tehseen DenseHillNet: a lightweight CNN for accurate classification of natural images PEERJ COMPUTER SCIENCE English Article The detection of natural images, such as glaciers and mountains, holds practical applications in transportation automation and outdoor activities. Convolutional neural networks (CNNs) have been widely employed for image recognition and classification tasks. While previous studies have focused on fruits, land sliding, and medical images, there is a need for further research on the detection of natural images, particularly glaciers and mountains. To address the limitations of traditional CNNs, such as vanishing gradients and the need for many layers, the proposed work introduces a novel model called DenseHillNet. The model utilizes a DenseHillNet architecture, a type of CNN with densely connected layers, to accurately classify images as glaciers or mountains. The model contributes to the development of automation technologies in transportation and outdoor activities. The dataset used in this study comprises 3,096 images of each of the glacier and mountain categories. Rigorous methodology was employed for dataset preparation and model training, ensuring the validity of the results. A comparison with a previous work revealed that the proposed DenseHillNet model, trained on both glacier and mountain images, achieved higher accuracy (86%) compared to a CNN model that only utilized glacier images (72%). Researchers and graduate students are the audience of our article. PEERJ INC 2376-5992 2024 10 10.7717/peerj-cs.1995 Computer Science gold WOS:001223362100002 https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001223362100002 |
title |
DenseHillNet: a lightweight CNN for accurate classification of natural images |
title_short |
DenseHillNet: a lightweight CNN for accurate classification of natural images |
title_full |
DenseHillNet: a lightweight CNN for accurate classification of natural images |
title_fullStr |
DenseHillNet: a lightweight CNN for accurate classification of natural images |
title_full_unstemmed |
DenseHillNet: a lightweight CNN for accurate classification of natural images |
title_sort |
DenseHillNet: a lightweight CNN for accurate classification of natural images |
container_title |
PEERJ COMPUTER SCIENCE |
language |
English |
format |
Article |
description |
The detection of natural images, such as glaciers and mountains, holds practical applications in transportation automation and outdoor activities. Convolutional neural networks (CNNs) have been widely employed for image recognition and classification tasks. While previous studies have focused on fruits, land sliding, and medical images, there is a need for further research on the detection of natural images, particularly glaciers and mountains. To address the limitations of traditional CNNs, such as vanishing gradients and the need for many layers, the proposed work introduces a novel model called DenseHillNet. The model utilizes a DenseHillNet architecture, a type of CNN with densely connected layers, to accurately classify images as glaciers or mountains. The model contributes to the development of automation technologies in transportation and outdoor activities. The dataset used in this study comprises 3,096 images of each of the glacier and mountain categories. Rigorous methodology was employed for dataset preparation and model training, ensuring the validity of the results. A comparison with a previous work revealed that the proposed DenseHillNet model, trained on both glacier and mountain images, achieved higher accuracy (86%) compared to a CNN model that only utilized glacier images (72%). Researchers and graduate students are the audience of our article. |
publisher |
PEERJ INC |
issn |
2376-5992 |
publishDate |
2024 |
container_volume |
10 |
container_issue |
|
doi_str_mv |
10.7717/peerj-cs.1995 |
topic |
Computer Science |
topic_facet |
Computer Science |
accesstype |
gold |
id |
WOS:001223362100002 |
url |
https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001223362100002 |
record_format |
wos |
collection |
Web of Science (WoS) |
_version_ |
1809679005118365696 |