Pyrolyzed coal base high surface area and mesoporous activated carbon for methyl violet 2B dye removal: Optimization of preparation conditions and adsorption key parameters
Herein, a low-grade Malaysian coal namely Merit Karpit coal (MRTKC) was transformed into high surface area mesoporous activated carbon (MRTKC-AC) via pyrolysis-assisted ZnCl2 activation. A numerical optimization approach rooted in the Box-Behnken design (BBD) was employed to determine the best opera...
Published in: | CHEMICAL ENGINEERING RESEARCH & DESIGN |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Published: |
ELSEVIER
2024
|
Subjects: | |
Online Access: | https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001215407800001 |
Summary: | Herein, a low-grade Malaysian coal namely Merit Karpit coal (MRTKC) was transformed into high surface area mesoporous activated carbon (MRTKC-AC) via pyrolysis-assisted ZnCl2 activation. A numerical optimization approach rooted in the Box-Behnken design (BBD) was employed to determine the best operational conditions such as A: dosage of MRTKC-AC (ranging from 0.02 to 0.1 g/100 mL), B: the pH of the solution (varying from 4 to 10), and C: the contact time (ranging from 5 to 25 min). A notable surface area of 1229.1 m2/g and a distinctive mesoporous structure with an average pore diameter of 2.9 nm was achieved at optimum impregnation ratio (1 MRTKC: 2 ZnCl2), heating temperature 500 degrees C, and residence time 60 min. Moreover, the application of MRTKCAC was evaluated through the removal of methyl violet (MV) from the aqueous environment. The comprehensive equilibrium and kinetic adsorption analyses showed that the adsorption of MV by MRTKC-AC matched closely to the Langmuir isotherm model, while the kinetic behavior was suitably described by the pseudo-second order model. Thus, the maximum adsorption capacity (qmax) for MV dye onto MRTKC-AC was ascertained to be a substantial 238.6 mg/g. The MV dye adsorption mechanism onto MRTKC-AC surface indicates various dye-adsorbent interactions: electrostatic attraction, p-p interaction, and H-bonding. This work shows that Malaysian low-rank coal is an economical precursor for producing low-cost and efficient mesoporous activated carbon with substantive surface area. |
---|---|
ISSN: | 0263-8762 1744-3563 |
DOI: | 10.1016/j.cherd.2024.03.015 |