Synergistic hybrid catalyst synthesis for epoxidation of linoleic acid via in situ performic acid

This study aims to investigate the optimal conditions for the epoxidation of linoleic acid by an in situ peracid mechanism with an applied hybrid sulfuric and hydrochloric acid as catalysts. There is no published work on producing epoxidized linoleic acid by peracetic acid mechanism using a hybrid h...

Full description

Bibliographic Details
Published in:BIOMASS CONVERSION AND BIOREFINERY
Main Authors: Shahrizan, Ahmad Shauqi Abrar; Azmi, Intan Suhada; Mubarak, Nabisab Mujawar; Jalil, Mohd Jumain
Format: Article; Early Access
Language:English
Published: SPRINGER HEIDELBERG 2024
Subjects:
Online Access:https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001202042800004
Description
Summary:This study aims to investigate the optimal conditions for the epoxidation of linoleic acid by an in situ peracid mechanism with an applied hybrid sulfuric and hydrochloric acid as catalysts. There is no published work on producing epoxidized linoleic acid by peracetic acid mechanism using a hybrid homogenous-homogenous catalyst. The linoleic acid was epoxidized with performic acid obtained in situ through the reaction between formic acid and hydrogen peroxide in the presence of a catalyst. The highest conversion to oxirane of 85% was achieved at a ratio of 1 M formic acid to 2 M of hydrogen peroxide, a temperature of 45 degrees C, and a stirring speed of 400 rpm. The characterization using a Fourier-transform infrared spectroscopy (FTIR) shows the existence of the oxirane ring group at wavenumber 860 cm-1. The numerical simulations were performed using a genetic algorithm, and the results showed good agreement between the simulation and experimental data, which validates the kinetic model.
ISSN:2190-6815
2190-6823
DOI:10.1007/s13399-024-05601-6