Synergistic hybrid catalyst synthesis for epoxidation of linoleic acid via in situ performic acid

This study aims to investigate the optimal conditions for the epoxidation of linoleic acid by an in situ peracid mechanism with an applied hybrid sulfuric and hydrochloric acid as catalysts. There is no published work on producing epoxidized linoleic acid by peracetic acid mechanism using a hybrid h...

全面介紹

書目詳細資料
發表在:Biomass Conversion and Biorefinery
主要作者: 2-s2.0-86000385641
格式: Article
語言:English
出版: Springer Science and Business Media Deutschland GmbH 2025
在線閱讀:https://www.scopus.com/inward/record.uri?eid=2-s2.0-86000385641&doi=10.1007%2fs13399-024-05601-6&partnerID=40&md5=2ba4ababd9152e0841145868655b9078
實物特徵
總結:This study aims to investigate the optimal conditions for the epoxidation of linoleic acid by an in situ peracid mechanism with an applied hybrid sulfuric and hydrochloric acid as catalysts. There is no published work on producing epoxidized linoleic acid by peracetic acid mechanism using a hybrid homogenous-homogenous catalyst. The linoleic acid was epoxidized with performic acid obtained in situ through the reaction between formic acid and hydrogen peroxide in the presence of a catalyst. The highest conversion to oxirane of 85% was achieved at a ratio of 1 M formic acid to 2 M of hydrogen peroxide, a temperature of 45 °C, and a stirring speed of 400 rpm. The characterization using a Fourier-transform infrared spectroscopy (FTIR) shows the existence of the oxirane ring group at wavenumber 860 cm−1. The numerical simulations were performed using a genetic algorithm, and the results showed good agreement between the simulation and experimental data, which validates the kinetic model. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
ISSN:21906815
DOI:10.1007/s13399-024-05601-6