Digital image processing technique for palm oil leaf disease detection using multiclass SVM classifier
Disease in oil palm sector is one of the major concerns cause it effects the production and economy losses to Malaysia. The problem of disease that arises in oil palm plantation are. Nowadays plant diseases detection has received a lot of attention in monitoring the symptoms at earlier stage of plan...
الحاوية / القاعدة: | 2017 IEEE International Conference on Smart Instrumentation, Measurement and Applications, ICSIMA 2017 |
---|---|
المؤلف الرئيسي: | 2-s2.0-85050597503 |
التنسيق: | Conference paper |
اللغة: | English |
منشور في: |
Institute of Electrical and Electronics Engineers Inc.
2017
|
الوصول للمادة أونلاين: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050597503&doi=10.1109%2fICSIMA.2017.8311978&partnerID=40&md5=7b227a6d7dbe9d11c9456a08fb7572a4 |
مواد مشابهة
-
Classification of leaf disease from image processing technique
بواسطة: 2-s2.0-85040936799
منشور في: (2018) -
Orchid leaf disease detection using border segmentation techniques
بواسطة: 2-s2.0-84949925661
منشور في: (2014) -
Evaluation the Accuracy of Oil Palm Tree Detection Using Deep Learning and Support Vector Machine Classifiers
بواسطة: 2-s2.0-85135484503
منشور في: (2022) -
Classification of nutrient deficiency in oil palms from leaf images using convolutional neural network
بواسطة: 2-s2.0-85136305765
منشور في: (2022) -
Accuracy of advanced deep learning with tensorflow and keras for classifying teeth developmental stages in digital panoramic imaging
بواسطة: 2-s2.0-85127856200
منشور في: (2022)