ON LOCAL ANTIMAGIC TOTAL LABELING OF COMPLETE GRAPHS AMALGAMATION
Let G = (V, E) be a connected simple graph of order p and size q. A graph G is called local antimagic (total) if G admits a local antimagic (total) labeling. A bijection g : E → {1, 2, . . ., q} is called a local antimagic labeling of G if for any two adjacent vertices u and v, we have g+(u) ≠ g+(v)...
相似书籍
-
EVERY GRAPH IS LOCAL ANTIMAGIC TOTAL AND ITS APPLICATIONS
由: 2-s2.0-85170201438
出版: (2023) -
On Bridge Graphs with Local Antimagic Chromatic Number 3
由: Shiu, et al.
出版: (2025) -
On Bridge Graphs with Local Antimagic Chromatic Number 3
由: Shiu W.-C.; Lau G.-C.; Zhang R.
出版: (2025) -
On Local Antimagic Chromatic Number of Cycle-Related Join Graphs
由: 2-s2.0-85099496674
出版: (2021) -
A complete solution of 3-step hamiltonian grids and torus graphs
由: Lau G.-C.; Lee S.-M.; Schaffer K.; Tong S.-M.
出版: (2019)