A new scaled steepest descent method for unconstrained optimization with global convergence properties
The steepest descent method is the simplest gradient method for solving unconstrained optimization problems. In this study, a new scaled search direction of steepest descent method is proposed. The proposed method is motivated by Andrei's approach of scaled conjugate gradient method. The numeri...
出版年: | Journal of Engineering and Applied Sciences |
---|---|
第一著者: | 2-s2.0-85052916904 |
フォーマット: | 論文 |
言語: | English |
出版事項: |
Medwell Journals
2018
|
オンライン・アクセス: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052916904&doi=10.3923%2fjeasci.2018.5442.5445&partnerID=40&md5=822e79dfab1cbbc4ca1e6247aba3db69 |
類似資料
-
A modifications of conjugate gradient method for unconstrained optimization problems
著者:: 2-s2.0-85045397706
出版事項: (2018) -
A new sufficient descent conjugate gradient method with exact line search
著者:: 2-s2.0-85076753588
出版事項: (2019) -
Nonlinear Least Squares Problems Using Approximate Greatest Descent Method
著者:: 2-s2.0-85146657825
出版事項: (2022) -
Stochastic Gradient Descent with Positive Defined Stabilized Barzilai-Borwein method
著者:: Shi W.; Shuib A.; Alwadood Z.
出版事項: (2025) -
Parameter extraction of single, double, and three diodes photovoltaic model based on guaranteed convergence arithmetic optimization algorithm and modified third order Newton Raphson methods
著者:: 2-s2.0-85128465622
出版事項: (2022)