A new scaled steepest descent method for unconstrained optimization with global convergence properties

The steepest descent method is the simplest gradient method for solving unconstrained optimization problems. In this study, a new scaled search direction of steepest descent method is proposed. The proposed method is motivated by Andrei's approach of scaled conjugate gradient method. The numeri...

وصف كامل

التفاصيل البيبلوغرافية
الحاوية / القاعدة:Journal of Engineering and Applied Sciences
المؤلف الرئيسي: 2-s2.0-85052916904
التنسيق: مقال
اللغة:English
منشور في: Medwell Journals 2018
الوصول للمادة أونلاين:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052916904&doi=10.3923%2fjeasci.2018.5442.5445&partnerID=40&md5=822e79dfab1cbbc4ca1e6247aba3db69
الوصف
الملخص:The steepest descent method is the simplest gradient method for solving unconstrained optimization problems. In this study, a new scaled search direction of steepest descent method is proposed. The proposed method is motivated by Andrei's approach of scaled conjugate gradient method. The numerical results show that the proposed method outperforms than the other classical steepest descent method. © Medwell Journals, 2018.
تدمد:1816949X
DOI:10.3923/jeasci.2018.5442.5445