Automated Ground Truth Annotation for Forest and Non-Forest Classification in Satellite Remote Sensing Images
Accurate ground truth annotation plays a vital role in training and evaluating deep learning models for forest and non-forest classification tasks. This paper introduces a robust algorithm designed to automate the annotation process, specifically targeting the identification of regions of interest;...
相似书籍
-
Forest Segmentation with Spatial Pyramid Pooling Modules: A Surveillance System Based on Satellite Images
由: 2-s2.0-85149016774
出版: (2023) -
Statistical Analysis for Forest Fire Factors Using Geography Information System (GIS) and Remote Sensing Imagery
由: 2-s2.0-85195303139
出版: (2025) -
Estimating feature extraction changes of Berkelah Forest, Malaysia from multisensor remote sensing data using and object-based technique
由: Rozali S.; Abd Latif Z.; Adnan N.A.; Hussin Y.; Blackburn A.; Pradhan B.
出版: (2022) -
Use of Nonlinear Features for Automated Characterization of Suspicious Ovarian Tumors Using Ultrasound Images in Fuzzy Forest Framework
由: Acharya U.R.; Akter A.; Chowriappa P.; Dua S.; Raghavendra U.; Koh J.E.W.; Tan J.H.; Leong S.S.; Vijayananthan A.; Hagiwara Y.; Ramli M.T.; Ng K.H.
出版: (2018) -
LoRa-Based Ground Sensor Terminal for L-Band Satellite IoT Applications
由: Omar M.F.; Faiza Z.; Ali F.Z.; Roslee M.; Johari M.S.; Jusoh M.H.
出版: (2024)