Automated Ground Truth Annotation for Forest and Non-Forest Classification in Satellite Remote Sensing Images
Accurate ground truth annotation plays a vital role in training and evaluating deep learning models for forest and non-forest classification tasks. This paper introduces a robust algorithm designed to automate the annotation process, specifically targeting the identification of regions of interest;...
الحاوية / القاعدة: | 2023 4th International Conference on Artificial Intelligence and Data Sciences: Discovering Technological Advancement in Artificial Intelligence and Data Science, AiDAS 2023 - Proceedings |
---|---|
المؤلف الرئيسي: | 2-s2.0-85176549266 |
التنسيق: | Conference paper |
اللغة: | English |
منشور في: |
Institute of Electrical and Electronics Engineers Inc.
2023
|
الوصول للمادة أونلاين: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85176549266&doi=10.1109%2fAiDAS60501.2023.10284683&partnerID=40&md5=5e0e1a03f16304dec14a8f8c9fa9cf46 |
مواد مشابهة
-
Forest Segmentation with Spatial Pyramid Pooling Modules: A Surveillance System Based on Satellite Images
بواسطة: 2-s2.0-85149016774
منشور في: (2023) -
Statistical Analysis for Forest Fire Factors Using Geography Information System (GIS) and Remote Sensing Imagery
بواسطة: 2-s2.0-85195303139
منشور في: (2025) -
Estimating feature extraction changes of Berkelah Forest, Malaysia from multisensor remote sensing data using and object-based technique
بواسطة: Rozali S.; Abd Latif Z.; Adnan N.A.; Hussin Y.; Blackburn A.; Pradhan B.
منشور في: (2022) -
Use of Nonlinear Features for Automated Characterization of Suspicious Ovarian Tumors Using Ultrasound Images in Fuzzy Forest Framework
بواسطة: Acharya U.R.; Akter A.; Chowriappa P.; Dua S.; Raghavendra U.; Koh J.E.W.; Tan J.H.; Leong S.S.; Vijayananthan A.; Hagiwara Y.; Ramli M.T.; Ng K.H.
منشور في: (2018) -
LoRa-Based Ground Sensor Terminal for L-Band Satellite IoT Applications
بواسطة: Omar M.F.; Faiza Z.; Ali F.Z.; Roslee M.; Johari M.S.; Jusoh M.H.
منشور في: (2024)