Automated Detection of Dyslexia Symptom Based on Handwriting Image for Primary School Children
This paper presents an automated detection system to identify the present of dyslexia symptoms in primary school children based on their handwriting images. The proposed automated detection system is developed by using pattern recognition technique. Based on their handwriting images, the pattern rec...
出版年: | Procedia Computer Science |
---|---|
第一著者: | 2-s2.0-85081159240 |
フォーマット: | Conference paper |
言語: | English |
出版事項: |
Elsevier B.V.
2019
|
オンライン・アクセス: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081159240&doi=10.1016%2fj.procs.2019.12.127&partnerID=40&md5=d2ee1dce6d929e87d8f5cef3ddd59223 |
類似資料
-
Handwriting Image Classification for Automated Diagnosis of Learning Disabilities: A Review on Deep Learning Models and Future Directions
著者:: Sukiman S.A.; Husin N.A.; Hamdan H.; Murad M.A.A.
出版事項: (2024) -
MathLexic: An assistive multimedia mathematical learning aid for dyslexia children
著者:: 2-s2.0-84883096645
出版事項: (2013) -
Bijak Membaca - Applying Phonic Reading Technique and Multisensory Approach with interactive multimedia for dyslexia children
著者:: 2-s2.0-84877669564
出版事項: (2012) -
Arabic Handwriting Classification using Deep Transfer Learning Techniques
著者:: 2-s2.0-85125867421
出版事項: (2022) -
Characteristics of ultrafine particle sources and deposition rates in primary school classrooms
著者:: 2-s2.0-84900803036
出版事項: (2014)