Bactericidal Capacity of a Heterogeneous TiO2/ZnO Nanocomposite against Multidrug-Resistant and Non-Multidrug-Resistant Bacterial Strains Associated with Nosocomial Infections

The surge of medical devices associated with nosocomial infection (NI) cases, especially by multidrug-resistant (MDR) bacterial strains, is one of the pressing issues of present health care systems. Metal oxide nanoparticles (MNPs) have become promising antibacterial agents against a wide range of b...

詳細記述

書誌詳細
出版年:ACS Omega
第一著者: 2-s2.0-85085756624
フォーマット: 論文
言語:English
出版事項: American Chemical Society 2020
オンライン・アクセス:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085756624&doi=10.1021%2facsomega.0c00213&partnerID=40&md5=fda62e89d7c21065b6ebc3cf2628f7b3
その他の書誌記述
要約:The surge of medical devices associated with nosocomial infection (NI) cases, especially by multidrug-resistant (MDR) bacterial strains, is one of the pressing issues of present health care systems. Metal oxide nanoparticles (MNPs) have become promising antibacterial agents against a wide range of bacterial strains. This work study is on the bactericidal capacity of heterogeneous TiO2/ZnO nanocomposites with different weight percentages and concentrations against common MDR and non-MDR bacterial strains. The profiles on disk diffusion, minimum inhibitory concentration, minimum bactericidal concentration, tolerance determination, time-kill, and biofilm inhibition assay were determined after 24 h of direct contact with the nanocomposite samples. Findings from this work revealed that the heterogeneous TiO2/ZnO nanocomposite with a 25T75Z weight ratio showed an optimal tolerance ratio against Gram-positive and-negative bacteria, indicating their bactericidal capacity. Further observation suggests that higher molar ratio of Zn2+ may possibly involve generation of active ion species that enhance bactericidal effect against Gram-positive bacterial strains, especially for the MDR strains. Nano-based technology using MNPs may provide a promising solution for the prevention and control of NIs. Further work on biocompatibility and cytotoxicity profiles of this nanocomposite are needed. © 2020 American Chemical Society.
ISSN:24701343
DOI:10.1021/acsomega.0c00213