Development and Analysis of 3D Printed Knee Orthosis for Post Anterior Cruciate Ligament Injuries Rehabilitation

An anterior cruciate ligament (ACL) rupture is one of the most severe injuries an athlete can suffer, resulting in knee joint instability and significant pain. This study aims to develop and analyze 3D-printed knee orthoses for post-ACL injury rehabilitation to overcome conventional orthoses' d...

詳細記述

書誌詳細
出版年:International Exchange and Innovation Conference on Engineering and Sciences
第一著者: 2-s2.0-85213306488
フォーマット: Conference paper
言語:English
出版事項: Kyushu University 2024
オンライン・アクセス:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85213306488&doi=10.5109%2f7323320&partnerID=40&md5=443e357e27726f9d3641ccff9dfd5658
その他の書誌記述
要約:An anterior cruciate ligament (ACL) rupture is one of the most severe injuries an athlete can suffer, resulting in knee joint instability and significant pain. This study aims to develop and analyze 3D-printed knee orthoses for post-ACL injury rehabilitation to overcome conventional orthoses' drawbacks. The project uses 3D scanning, modeling, and printing techniques. It evaluates knee orthoses performance of three different thicknesses and designs through finite element analysis using Marc software, focusing on von Mises stress and displacement. For the compression test, a face load is applied to the knee model's top surface, consisting of half the subject's body weight multiplied by 10 N. For the 3-point bending test, a point load of 134 N is applied to the tibia's posterior part. Results show that a 7 mm thickness is optimal, exhibiting the lowest stress and displacement, providing the best support. © 2024, IEICES/Kyushu University. All rights reserved.
ISSN:24341436
DOI:10.5109/7323320