Summary: | This study presents a simple and effective bio-templated synthesis method for fabricating zinc ferrite (ZnFe₂O₄) nanofiber photoelectrodes, designed to enhance photoelectrochemical (PEC) activity across different electrolytes. Utilizing kapok fiber as a bio-template, a nanofibril-structured catalyst was synthesized and deposited onto fluorine-doped tin oxide (FTO) substrates via electrophoretic deposition, resulting in thin film photoelectrodes. Comprehensive analytical and spectroscopy techniques, including FESEM, EDX, XRD, ATR-FTIR, UV–Vis, BET, and XPS, confirmed the purity and physiochemical properties of the synthesized sample. PEC measurements reveal that the ZnFe₂O₄ nanofiber photoelectrode achieves significant current densities in different electrolytes, with KOH showing the highest performance followed by Na₂SO₄, Na₂SO₃, and NaOH, respectively, at 0.5 M and 0.7 V vs. Ag/AgCl. The preparation of the bio-mimetic ZnFe₂O₄ nanofiber photocatalyst proves to be a facile, cost-effective, and promising photoanode material for PEC applications, contributing significantly to the advancement of environmentally friendly and efficient energy conversion technologies. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
|