Stochastic Gradient Descent with Positive Defined Stabilized Barzilai-Borwein method
As society advances, machine learning holds increasing significance. Optimization, a crucial aspect in machine learning, has garnered considerable research attention. Addressing optimization challenges has become pivotal as models grow in complexity alongside the exponential rise in data volume. In...
發表在: | IAENG International Journal of Computer Science |
---|---|
主要作者: | Shi W.; Shuib A.; Alwadood Z. |
格式: | Article |
語言: | English |
出版: |
International Association of Engineers
2025
|
在線閱讀: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85216921813&partnerID=40&md5=1411b8590ec006be16f0d923177a499a |
相似書籍
-
Comparison of the efficacy of particle swarm optimization and stochastic gradient descent algorithms on multi-layer perceptron model to estimate longitudinal dispersion coefficients in natural streams
由: 2-s2.0-85142253156
出版: (2022) -
A new sufficient descent conjugate gradient method with exact line search
由: 2-s2.0-85076753588
出版: (2019) -
Nonlinear Least Squares Problems Using Approximate Greatest Descent Method
由: 2-s2.0-85146657825
出版: (2022) -
Stochastic study on dynamic behaviour of bolted joint structure
由: Shah M.A.S.A.; Yunus M.A.; Rani M.N.A.; Yahya Z.
出版: (2022) -
A new scaled steepest descent method for unconstrained optimization with global convergence properties
由: 2-s2.0-85052916904
出版: (2018)