Machine Learning-Driven Characterization of Optical Materials: Predicting JO Parameters in Rare-Earth Doped Glasses
This paper presents a machine learning-driven approach for predicting the spectroscopic properties of rare-earth (RE) doped glass systems, with a focus on Dy3+ ions. Glass compositions of 0.25 PbO–0.2 SiO2–(0.55−x) B2O3–x Dy2O3 were synthesized using the melt-quenching technique, and their density,...
相似书籍
-
Idiopathic thyroid abscess - A rare occurrence
由: Singh M.K.C.; Vijayanathan A.
出版: (2019) -
ELUCIDATING THE EFFECTS OF NEODYMIUM NANOPARTICLES ON JUDD-OFELT AND OPTICAL PARAMETERS OF ZINCTELLURITE GLASS FOR FIBER LASERS
由: Azlan, et al.
出版: (2024) -
Investigation of optical properties and radioactive attenuation parameters of doped tungsten oxide soda lime silica SLS waste glass
由: 2-s2.0-85137072562
出版: (2022) -
The impact of data-driven learning on the improvement of grammatical proficiency in the ESL classroom environment
由: Sultana S.; Singh M.K.S.; Islam R.; Hajimia H.
出版: (2025) -
My Map Portal Engine Search (MMPes) utilizing spatial dataset with Google Earth
由: Juhari S.; Jaafar J.; Idris R.; Ahmad M.Y.
出版: (2013)