Hybrid Deep Learning Models for Classification of Normal and Abnormal Breathing Patterns Using Ultra-Wideband Radar
Breathing is considered a crucial physiological metric when monitoring human vital signs. In resource-constrained environments with limited access to trained medical professionals, the automated analysis of abnormal breathing patterns can offer significant advantages to healthcare systems. In this r...
相似书籍
-
Hybrid Deep Learning Models for Classification of Normal and Abnormal Breathing Patterns Using Ultra-Wideband Radar
由: Husaini, et al.
出版: (2025) -
Association between Sleep Patterns and Academic Performance
由: Ibrahim L.; Ibrahim N.; Kamarudin A.N.; Md Ghani N.A.
出版: (2021) -
Signal analysis for drone detection and characterization using acoustic radar
由: Zakaria N.A.Z.; Rozaimi F.N.S.M.; Ab Rahim S.A.E.; Khan Z.I.
出版: (2024) -
Classification Type of Asynchrony Breathing Image Using 2-Dimensional Convolutional Neural Network
由: 2-s2.0-85177443458
出版: (2023) -
Estimation of Asynchrony Events with Negative Elastance in Spontaneously Breathing Mechanically Ventilated Patients in ICU
由: Sauki N.S.M.; Damanhuri N.S.; Othman N.A.; Chiew Y.S.; Meng B.C.C.; Nor M.B.M.; Zainol N.M.; Ralib A.M.
出版: (2022)