Summary: | Anodic porous nickel oxide (NiO) was grown by anodization of Ni in ethylene glycol (EG) added to NH4F at 60 V in a two-step anodic process. The first process produced hydrated anodic film which was removed before the foil was subjected to a second anodic process. This led to the formation of porous structure with pore diameters of a 90 -180 nm. Formation of porous structure was done as to provide a larger specific surface area that can increase the removal efficiency of the hexavalent chromium. The as-anodized anodic film was then annealed at 300 qC to improve the adhesion of nickel oxides porous to substrates before being used as a photocatalyst to reduce Cr(VI) in a synthetic wastewater under ultraviolet (UV) irradiation. Porous NiO showed a good photocatalyst performance in reducing Cr(VI) to Cr(III) with 60% reduction after 150 min. However, with the addition of ethylenediaminetetraacetic acid (EDTA), 100% reduction was achieved after 120 min indicating that EDTA is required as holes scavengers. © 2024 Institute of Physics Publishing. All rights reserved.
|