Aerodynamic performance of dragonfly-inspired wings in gliding flight for varying angle of attack and Reynolds number: a numerical study

This paper numerically investigates the aerodynamic performance of dragonfly-inspired wings for gliding flight. Dragonfly hind wing morphology (planform and thickness) is considered to create a three-dimensional model. The morphology was obtained from the Aethriamanta brevipennis (Scarlet Marsh Hawk...

Full description

Bibliographic Details
Published in:Progress in Computational Fluid Dynamics
Main Author: Verekar P.; Baloor S.S.; Yusoff H.; Magami I.A.B.; Kamangar S.; Zuber M.
Format: Article
Language:English
Published: Inderscience Publishers 2025
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85214662790&doi=10.1504%2fPCFD.2025.143742&partnerID=40&md5=fc1107570ee785e12ad601bfc2b16558
Description
Summary:This paper numerically investigates the aerodynamic performance of dragonfly-inspired wings for gliding flight. Dragonfly hind wing morphology (planform and thickness) is considered to create a three-dimensional model. The morphology was obtained from the Aethriamanta brevipennis (Scarlet Marsh Hawk) species of Odonata using a digital micrometer instrument and scanning electron microscope. Gliding flight is known for energy-saving applications. The present study was conducted to assess the effects of the angle of attack (α) (0° to 40°) on the glide performance. The Reynolds numbers of 550, 1,400, and 10,000 were used. The flow separation was witnessed beyond 10° of the angle of attack, and the peak value of glide ratio was near 10° angle of attack. This study shows that dragonfly will sustain flight at Reynolds number of 550 and 1,400 by orienting its wing for an angle of attack of 10°. This study has potential to aid in developing an appropriate wing orientation for insect-scale aerial vehicle applications. Copyright © 2025 Inderscience Enterprises Ltd.
ISSN:14684349
DOI:10.1504/PCFD.2025.143742