Biomechanical Evaluation of Three-Dimensional Printed Leg Orthosis for Ankle Fixation: Finite Element and Thermal Analysis
The rising prevalence of diabetes, projected to reach 334 million by 2030 which calls for the needs for effective foot orthosis. This study addresses the limitations of conventional leg orthosis by introducing customized approach using Finite Element Analysis (FEA) and 3D printing technology. A volu...
Published in: | International Exchange and Innovation Conference on Engineering and Sciences |
---|---|
Main Author: | |
Format: | Conference paper |
Language: | English |
Published: |
Kyushu University
2024
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85213354604&doi=10.5109%2f7323317&partnerID=40&md5=01816af8e8be37fc112e653bb4e923a4 |
id |
2-s2.0-85213354604 |
---|---|
spelling |
2-s2.0-85213354604 Mohd Salaha Z.F.; Jauhari Efendie S.N.; Abd Samad M.I.; Hanif Baharuddin M.; Halim Abdullah A.; Hanif Ramlee M. Biomechanical Evaluation of Three-Dimensional Printed Leg Orthosis for Ankle Fixation: Finite Element and Thermal Analysis 2024 International Exchange and Innovation Conference on Engineering and Sciences 10 10.5109/7323317 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85213354604&doi=10.5109%2f7323317&partnerID=40&md5=01816af8e8be37fc112e653bb4e923a4 The rising prevalence of diabetes, projected to reach 334 million by 2030 which calls for the needs for effective foot orthosis. This study addresses the limitations of conventional leg orthosis by introducing customized approach using Finite Element Analysis (FEA) and 3D printing technology. A volunteer’s ankle was scanned to create 360-degree digital model, adjusted for a customized fit and validated through FEA in CAD software. Furthermore, the results indicate that during all three gait conditions- stance, heel strike and toe off, the maximum VMS observed on the orthosis did not surpass the yield strength of TPE 85A (9.5 MPa). Specifically, the stress value recorded were 1.24627 MPa during stance, 3.18709MPa during heel strike, and 4.80551 MPa during toe off. The orthosis designed to accommodate natural body movements and thermal fluctuations, was 3D printed and evaluated for thermal comfort using thermal imaging. Results showed the orthosis effectively managed stress during gait phases with improved heat dissipation compared to conventional orthosis. © 2024, IEICES/Kyushu University. All rights reserved. Kyushu University 24341436 English Conference paper |
author |
Mohd Salaha Z.F.; Jauhari Efendie S.N.; Abd Samad M.I.; Hanif Baharuddin M.; Halim Abdullah A.; Hanif Ramlee M. |
spellingShingle |
Mohd Salaha Z.F.; Jauhari Efendie S.N.; Abd Samad M.I.; Hanif Baharuddin M.; Halim Abdullah A.; Hanif Ramlee M. Biomechanical Evaluation of Three-Dimensional Printed Leg Orthosis for Ankle Fixation: Finite Element and Thermal Analysis |
author_facet |
Mohd Salaha Z.F.; Jauhari Efendie S.N.; Abd Samad M.I.; Hanif Baharuddin M.; Halim Abdullah A.; Hanif Ramlee M. |
author_sort |
Mohd Salaha Z.F.; Jauhari Efendie S.N.; Abd Samad M.I.; Hanif Baharuddin M.; Halim Abdullah A.; Hanif Ramlee M. |
title |
Biomechanical Evaluation of Three-Dimensional Printed Leg Orthosis for Ankle Fixation: Finite Element and Thermal Analysis |
title_short |
Biomechanical Evaluation of Three-Dimensional Printed Leg Orthosis for Ankle Fixation: Finite Element and Thermal Analysis |
title_full |
Biomechanical Evaluation of Three-Dimensional Printed Leg Orthosis for Ankle Fixation: Finite Element and Thermal Analysis |
title_fullStr |
Biomechanical Evaluation of Three-Dimensional Printed Leg Orthosis for Ankle Fixation: Finite Element and Thermal Analysis |
title_full_unstemmed |
Biomechanical Evaluation of Three-Dimensional Printed Leg Orthosis for Ankle Fixation: Finite Element and Thermal Analysis |
title_sort |
Biomechanical Evaluation of Three-Dimensional Printed Leg Orthosis for Ankle Fixation: Finite Element and Thermal Analysis |
publishDate |
2024 |
container_title |
International Exchange and Innovation Conference on Engineering and Sciences |
container_volume |
10 |
container_issue |
|
doi_str_mv |
10.5109/7323317 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85213354604&doi=10.5109%2f7323317&partnerID=40&md5=01816af8e8be37fc112e653bb4e923a4 |
description |
The rising prevalence of diabetes, projected to reach 334 million by 2030 which calls for the needs for effective foot orthosis. This study addresses the limitations of conventional leg orthosis by introducing customized approach using Finite Element Analysis (FEA) and 3D printing technology. A volunteer’s ankle was scanned to create 360-degree digital model, adjusted for a customized fit and validated through FEA in CAD software. Furthermore, the results indicate that during all three gait conditions- stance, heel strike and toe off, the maximum VMS observed on the orthosis did not surpass the yield strength of TPE 85A (9.5 MPa). Specifically, the stress value recorded were 1.24627 MPa during stance, 3.18709MPa during heel strike, and 4.80551 MPa during toe off. The orthosis designed to accommodate natural body movements and thermal fluctuations, was 3D printed and evaluated for thermal comfort using thermal imaging. Results showed the orthosis effectively managed stress during gait phases with improved heat dissipation compared to conventional orthosis. © 2024, IEICES/Kyushu University. All rights reserved. |
publisher |
Kyushu University |
issn |
24341436 |
language |
English |
format |
Conference paper |
accesstype |
|
record_format |
scopus |
collection |
Scopus |
_version_ |
1823296156933816320 |