Development and Analysis of 3D Printed Knee Orthosis for Post Anterior Cruciate Ligament Injuries Rehabilitation
An anterior cruciate ligament (ACL) rupture is one of the most severe injuries an athlete can suffer, resulting in knee joint instability and significant pain. This study aims to develop and analyze 3D-printed knee orthoses for post-ACL injury rehabilitation to overcome conventional orthoses' d...
Published in: | International Exchange and Innovation Conference on Engineering and Sciences |
---|---|
Main Author: | |
Format: | Conference paper |
Language: | English |
Published: |
Kyushu University
2024
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85213306488&doi=10.5109%2f7323320&partnerID=40&md5=443e357e27726f9d3641ccff9dfd5658 |
id |
2-s2.0-85213306488 |
---|---|
spelling |
2-s2.0-85213306488 Adawiyah Zulkefli S.; Syamimi Ismail N.; Abd Samad M.I.; Hanif Baharuddin M.; Halim Abdullah A.; Hanif Ramlee M. Development and Analysis of 3D Printed Knee Orthosis for Post Anterior Cruciate Ligament Injuries Rehabilitation 2024 International Exchange and Innovation Conference on Engineering and Sciences 10 10.5109/7323320 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85213306488&doi=10.5109%2f7323320&partnerID=40&md5=443e357e27726f9d3641ccff9dfd5658 An anterior cruciate ligament (ACL) rupture is one of the most severe injuries an athlete can suffer, resulting in knee joint instability and significant pain. This study aims to develop and analyze 3D-printed knee orthoses for post-ACL injury rehabilitation to overcome conventional orthoses' drawbacks. The project uses 3D scanning, modeling, and printing techniques. It evaluates knee orthoses performance of three different thicknesses and designs through finite element analysis using Marc software, focusing on von Mises stress and displacement. For the compression test, a face load is applied to the knee model's top surface, consisting of half the subject's body weight multiplied by 10 N. For the 3-point bending test, a point load of 134 N is applied to the tibia's posterior part. Results show that a 7 mm thickness is optimal, exhibiting the lowest stress and displacement, providing the best support. © 2024, IEICES/Kyushu University. All rights reserved. Kyushu University 24341436 English Conference paper |
author |
Adawiyah Zulkefli S.; Syamimi Ismail N.; Abd Samad M.I.; Hanif Baharuddin M.; Halim Abdullah A.; Hanif Ramlee M. |
spellingShingle |
Adawiyah Zulkefli S.; Syamimi Ismail N.; Abd Samad M.I.; Hanif Baharuddin M.; Halim Abdullah A.; Hanif Ramlee M. Development and Analysis of 3D Printed Knee Orthosis for Post Anterior Cruciate Ligament Injuries Rehabilitation |
author_facet |
Adawiyah Zulkefli S.; Syamimi Ismail N.; Abd Samad M.I.; Hanif Baharuddin M.; Halim Abdullah A.; Hanif Ramlee M. |
author_sort |
Adawiyah Zulkefli S.; Syamimi Ismail N.; Abd Samad M.I.; Hanif Baharuddin M.; Halim Abdullah A.; Hanif Ramlee M. |
title |
Development and Analysis of 3D Printed Knee Orthosis for Post Anterior Cruciate Ligament Injuries Rehabilitation |
title_short |
Development and Analysis of 3D Printed Knee Orthosis for Post Anterior Cruciate Ligament Injuries Rehabilitation |
title_full |
Development and Analysis of 3D Printed Knee Orthosis for Post Anterior Cruciate Ligament Injuries Rehabilitation |
title_fullStr |
Development and Analysis of 3D Printed Knee Orthosis for Post Anterior Cruciate Ligament Injuries Rehabilitation |
title_full_unstemmed |
Development and Analysis of 3D Printed Knee Orthosis for Post Anterior Cruciate Ligament Injuries Rehabilitation |
title_sort |
Development and Analysis of 3D Printed Knee Orthosis for Post Anterior Cruciate Ligament Injuries Rehabilitation |
publishDate |
2024 |
container_title |
International Exchange and Innovation Conference on Engineering and Sciences |
container_volume |
10 |
container_issue |
|
doi_str_mv |
10.5109/7323320 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85213306488&doi=10.5109%2f7323320&partnerID=40&md5=443e357e27726f9d3641ccff9dfd5658 |
description |
An anterior cruciate ligament (ACL) rupture is one of the most severe injuries an athlete can suffer, resulting in knee joint instability and significant pain. This study aims to develop and analyze 3D-printed knee orthoses for post-ACL injury rehabilitation to overcome conventional orthoses' drawbacks. The project uses 3D scanning, modeling, and printing techniques. It evaluates knee orthoses performance of three different thicknesses and designs through finite element analysis using Marc software, focusing on von Mises stress and displacement. For the compression test, a face load is applied to the knee model's top surface, consisting of half the subject's body weight multiplied by 10 N. For the 3-point bending test, a point load of 134 N is applied to the tibia's posterior part. Results show that a 7 mm thickness is optimal, exhibiting the lowest stress and displacement, providing the best support. © 2024, IEICES/Kyushu University. All rights reserved. |
publisher |
Kyushu University |
issn |
24341436 |
language |
English |
format |
Conference paper |
accesstype |
|
record_format |
scopus |
collection |
Scopus |
_version_ |
1823296156949544960 |