CL-SR: Boosting Imbalanced Image Classification with Contrastive Learning and Synthetic Minority Oversampling Technique Based on Rough Set Theory Integration
Image recognition models often struggle with class imbalance, which can impede their performance. To overcome this issue, researchers have extensively used resampling methods, traditionally focused on tabular datasets. In contrast to the original method, which generates data at the data level, this...
الحاوية / القاعدة: | Applied Sciences (Switzerland) |
---|---|
المؤلف الرئيسي: | Gao X.; Jamil N.; Ramli M.I. |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Multidisciplinary Digital Publishing Institute (MDPI)
2024
|
الوصول للمادة أونلاين: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85212100370&doi=10.3390%2fapp142311093&partnerID=40&md5=9d4bce580aad2b95262de5a0de28d5a2 |
مواد مشابهة
-
Improving clustering-based and adaptive position-aware interpolation oversampling for imbalanced data classification
بواسطة: Wang Y.; Rosli M.M.; Musa N.; Wang L.
منشور في: (2024) -
Improving clustering-based and adaptive position-aware interpolation oversampling for imbalanced data classification
بواسطة: Wang, وآخرون
منشور في: (2024) -
A Comparative Analysis of Combination of CNN-Based Models with Ensemble Learning on Imbalanced Data
بواسطة: Gao X.; Jamil N.; Ramli M.I.; Ariffin S.M.Z.S.Z.
منشور في: (2024) -
Comparison of ensemble hybrid sampling with bagging and boosting machine learning approach for imbalanced data
بواسطة: 2-s2.0-85142097924
منشور في: (2023) -
Inhibition of prostaglandin E2 production by synthetic minor prenylated chalcones and flavonoids: Synthesis, biological activity, crystal structure, and in silico evaluation
بواسطة: 2-s2.0-84905899348
منشور في: (2014)