A Systematic Literature Review on Automatic Sexism Detection in Social Media

Sexist content has become increasingly prevalent on social media platforms, underscoring the critical need for the development of efficient Automatic Sexism Detection methods. Previous literature reviews have not encompassed the new advancements in Automatic Sexism Detection observed over the past t...

Full description

Bibliographic Details
Published in:Engineering, Technology and Applied Science Research
Main Author: Lei W.; Abdullah N.A.S.; Aris S.R.S.
Format: Article
Language:English
Published: Dr D. Pylarinos 2024
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85211476925&doi=10.48084%2fetasr.8881&partnerID=40&md5=ba44a065d722499713eb448a5f13c87a
id 2-s2.0-85211476925
spelling 2-s2.0-85211476925
Lei W.; Abdullah N.A.S.; Aris S.R.S.
A Systematic Literature Review on Automatic Sexism Detection in Social Media
2024
Engineering, Technology and Applied Science Research
14
6
10.48084/etasr.8881
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85211476925&doi=10.48084%2fetasr.8881&partnerID=40&md5=ba44a065d722499713eb448a5f13c87a
Sexist content has become increasingly prevalent on social media platforms, underscoring the critical need for the development of efficient Automatic Sexism Detection methods. Previous literature reviews have not encompassed the new advancements in Automatic Sexism Detection observed over the past three years. Hence, the present study conducted a Systematic Literature Review (SLR) that examined 48 primary studies published between 2014 and 17th Sept. 2024, retrieved from six bibliographic databases. This paper aims to present a comprehensive literature review on Automatic Sexism Detection, encompassing the datasets, preprocessing techniques, feature extraction methods, text representations, classification approaches, and evaluation models employed in Automatic Sexism Detection research. The paper includes a discussion of the findings, limitations, and future research directions of the chosen articles. Additionally, it provides an overview of the conclusions drawn from the conducted research. The performed analysis reveals a lack of corpus beyond the English and Spanish language encountered in datasets, with most of the latter being annotated for either misogyny or non-misogyny. Common preprocessing techniques analyzed in the current study include lowercase conversion, text removal, tokenization, stemming, and rewriting. Discrete representations, such as TF-IDF, N-grams, and BoW, are frequently utilized, while distributed representations, like Bert and GloVe, are prominent. Bert is the predominant classification model utilized while combining lexical features can enhance the results in the majority of the discussed scenarios. Accuracy (A) and F1 score (F1) are the most widely deployed evaluation metrics in this field. © by the authors.
Dr D. Pylarinos
22414487
English
Article
All Open Access; Gold Open Access
author Lei W.; Abdullah N.A.S.; Aris S.R.S.
spellingShingle Lei W.; Abdullah N.A.S.; Aris S.R.S.
A Systematic Literature Review on Automatic Sexism Detection in Social Media
author_facet Lei W.; Abdullah N.A.S.; Aris S.R.S.
author_sort Lei W.; Abdullah N.A.S.; Aris S.R.S.
title A Systematic Literature Review on Automatic Sexism Detection in Social Media
title_short A Systematic Literature Review on Automatic Sexism Detection in Social Media
title_full A Systematic Literature Review on Automatic Sexism Detection in Social Media
title_fullStr A Systematic Literature Review on Automatic Sexism Detection in Social Media
title_full_unstemmed A Systematic Literature Review on Automatic Sexism Detection in Social Media
title_sort A Systematic Literature Review on Automatic Sexism Detection in Social Media
publishDate 2024
container_title Engineering, Technology and Applied Science Research
container_volume 14
container_issue 6
doi_str_mv 10.48084/etasr.8881
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85211476925&doi=10.48084%2fetasr.8881&partnerID=40&md5=ba44a065d722499713eb448a5f13c87a
description Sexist content has become increasingly prevalent on social media platforms, underscoring the critical need for the development of efficient Automatic Sexism Detection methods. Previous literature reviews have not encompassed the new advancements in Automatic Sexism Detection observed over the past three years. Hence, the present study conducted a Systematic Literature Review (SLR) that examined 48 primary studies published between 2014 and 17th Sept. 2024, retrieved from six bibliographic databases. This paper aims to present a comprehensive literature review on Automatic Sexism Detection, encompassing the datasets, preprocessing techniques, feature extraction methods, text representations, classification approaches, and evaluation models employed in Automatic Sexism Detection research. The paper includes a discussion of the findings, limitations, and future research directions of the chosen articles. Additionally, it provides an overview of the conclusions drawn from the conducted research. The performed analysis reveals a lack of corpus beyond the English and Spanish language encountered in datasets, with most of the latter being annotated for either misogyny or non-misogyny. Common preprocessing techniques analyzed in the current study include lowercase conversion, text removal, tokenization, stemming, and rewriting. Discrete representations, such as TF-IDF, N-grams, and BoW, are frequently utilized, while distributed representations, like Bert and GloVe, are prominent. Bert is the predominant classification model utilized while combining lexical features can enhance the results in the majority of the discussed scenarios. Accuracy (A) and F1 score (F1) are the most widely deployed evaluation metrics in this field. © by the authors.
publisher Dr D. Pylarinos
issn 22414487
language English
format Article
accesstype All Open Access; Gold Open Access
record_format scopus
collection Scopus
_version_ 1820775429375524864