Physiomechanical of Residual Soil Contaminated with Zinc Heavy Metals

The rapid industrialization and radical development that has taken place in today's modern society, be it agriculture, construction, industry, soil degradation or heavy metal contamination of soil, is one of the most serious ecological and environmental problems, which continuously poses a seri...

Full description

Bibliographic Details
Published in:Journal of Advanced Research in Applied Mechanics
Main Author: Henry R.H.; Osman M.H.; Albar A.; Ismail B.N.
Format: Article
Language:English
Published: Semarak Ilmu Publishing 2025
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85211475418&doi=10.37934%2faram.127.1.172182&partnerID=40&md5=b96b9fc62405af465155335fa79114bf
id 2-s2.0-85211475418
spelling 2-s2.0-85211475418
Henry R.H.; Osman M.H.; Albar A.; Ismail B.N.
Physiomechanical of Residual Soil Contaminated with Zinc Heavy Metals
2025
Journal of Advanced Research in Applied Mechanics
127
1
10.37934/aram.127.1.172182
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85211475418&doi=10.37934%2faram.127.1.172182&partnerID=40&md5=b96b9fc62405af465155335fa79114bf
The rapid industrialization and radical development that has taken place in today's modern society, be it agriculture, construction, industry, soil degradation or heavy metal contamination of soil, is one of the most serious ecological and environmental problems, which continuously poses a serious threat to sustainable development. Heavy metals may change the geotechnical properties of soils, making it difficult to reconstruct buildings on those sites because the parameters of the contaminated soil are unknown. Contamination by heavy metals will lead change soil’s structure, pore characteristics and behaviour, resulting in changes in soil permeability, plasticity, compressibility, in terms of strength and eventually affecting the structural integrity. The main objective of the present investigation is to enhance the understanding of the impact of the significant and hazardous heavy metal, zinc (Zn), on the geotechnical properties. The residual soil was subjected to Compaction Test and Atterberg Limit Test for each analysis, which was assigned a number up to six samples, one of which was left uncontaminated. The remaining samples were combined with a ZnSO4 solution, with values ranging from 0 mg/L to 4000 mg/L and increased by 500 mg/L intervals. The findings reveal that as the penetration increases in liquid limit test, moisture content also increases where at the same time, plasticity index increases proportional to concentration of zinc contaminant producing soil with high plasticity. This outcome is in contrast with the increasing of concentrations where the pattern is more likely to shift to a lower value of moisture content. Based on the findings, the presence of heavy metal contaminants in soils leads to degradation of geological properties, including changes in mechanical behaviour and geotechnical properties based on the double diffuse layer theory. Increased zinc heavy metal concentrations lead to reduced water adsorption capacity of soil particles. © 2025, Semarak Ilmu Publishing. All rights reserved.
Semarak Ilmu Publishing
22897895
English
Article
All Open Access; Gold Open Access
author Henry R.H.; Osman M.H.; Albar A.; Ismail B.N.
spellingShingle Henry R.H.; Osman M.H.; Albar A.; Ismail B.N.
Physiomechanical of Residual Soil Contaminated with Zinc Heavy Metals
author_facet Henry R.H.; Osman M.H.; Albar A.; Ismail B.N.
author_sort Henry R.H.; Osman M.H.; Albar A.; Ismail B.N.
title Physiomechanical of Residual Soil Contaminated with Zinc Heavy Metals
title_short Physiomechanical of Residual Soil Contaminated with Zinc Heavy Metals
title_full Physiomechanical of Residual Soil Contaminated with Zinc Heavy Metals
title_fullStr Physiomechanical of Residual Soil Contaminated with Zinc Heavy Metals
title_full_unstemmed Physiomechanical of Residual Soil Contaminated with Zinc Heavy Metals
title_sort Physiomechanical of Residual Soil Contaminated with Zinc Heavy Metals
publishDate 2025
container_title Journal of Advanced Research in Applied Mechanics
container_volume 127
container_issue 1
doi_str_mv 10.37934/aram.127.1.172182
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85211475418&doi=10.37934%2faram.127.1.172182&partnerID=40&md5=b96b9fc62405af465155335fa79114bf
description The rapid industrialization and radical development that has taken place in today's modern society, be it agriculture, construction, industry, soil degradation or heavy metal contamination of soil, is one of the most serious ecological and environmental problems, which continuously poses a serious threat to sustainable development. Heavy metals may change the geotechnical properties of soils, making it difficult to reconstruct buildings on those sites because the parameters of the contaminated soil are unknown. Contamination by heavy metals will lead change soil’s structure, pore characteristics and behaviour, resulting in changes in soil permeability, plasticity, compressibility, in terms of strength and eventually affecting the structural integrity. The main objective of the present investigation is to enhance the understanding of the impact of the significant and hazardous heavy metal, zinc (Zn), on the geotechnical properties. The residual soil was subjected to Compaction Test and Atterberg Limit Test for each analysis, which was assigned a number up to six samples, one of which was left uncontaminated. The remaining samples were combined with a ZnSO4 solution, with values ranging from 0 mg/L to 4000 mg/L and increased by 500 mg/L intervals. The findings reveal that as the penetration increases in liquid limit test, moisture content also increases where at the same time, plasticity index increases proportional to concentration of zinc contaminant producing soil with high plasticity. This outcome is in contrast with the increasing of concentrations where the pattern is more likely to shift to a lower value of moisture content. Based on the findings, the presence of heavy metal contaminants in soils leads to degradation of geological properties, including changes in mechanical behaviour and geotechnical properties based on the double diffuse layer theory. Increased zinc heavy metal concentrations lead to reduced water adsorption capacity of soil particles. © 2025, Semarak Ilmu Publishing. All rights reserved.
publisher Semarak Ilmu Publishing
issn 22897895
language English
format Article
accesstype All Open Access; Gold Open Access
record_format scopus
collection Scopus
_version_ 1820775427864526848