Improving transformer failure classification on imbalanced DGA data using data-level techniques and machine learning

This study addresses the challenge of imbalanced dissolved gas analysis (DGA) data in transformer failure classification by assessing the impact of data-level balancing techniques on machine learning performance. Five data-level strategies – Random Under-Sampling (RUS), Edited Nearest Neighbors (ENN...

Full description

Bibliographic Details
Published in:Energy Reports
Main Author: Azmi P.A.R.; Yusoff M.; Sallehud-din M.T.M.
Format: Article
Language:English
Published: Elsevier Ltd 2025
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85211464729&doi=10.1016%2fj.egyr.2024.12.006&partnerID=40&md5=a2ce560b66c09b702e817d88325bd90e

Similar Items