Predicting and Explaining Customer Response to Upselling in Telecommunications: A Malaysian Case Study

This research explores the predictive capabilities of XGBoost (XGB) and Random Forest (RF) models for customer upsell responses, emphasizing the use of Explainable Artificial Intelligence (XAI) techniques to gain insights. Initially trained without hyperparameter tuning, both models were later optim...

Full description

Bibliographic Details
Published in:International Journal on Informatics Visualization
Main Author: Abdullah R.S.; Nulizairos N.S.S.; Ariffin N.H.M.; Witarsyah D.; Maskat R.
Format: Article
Language:English
Published: Politeknik Negeri Padang 2024
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85211431962&doi=10.62527%2fjoiv.8.3-2.2823&partnerID=40&md5=119455cc50a5943f5685b615efd4c96b
id 2-s2.0-85211431962
spelling 2-s2.0-85211431962
Abdullah R.S.; Nulizairos N.S.S.; Ariffin N.H.M.; Witarsyah D.; Maskat R.
Predicting and Explaining Customer Response to Upselling in Telecommunications: A Malaysian Case Study
2024
International Journal on Informatics Visualization
8
2-Mar
10.62527/joiv.8.3-2.2823
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85211431962&doi=10.62527%2fjoiv.8.3-2.2823&partnerID=40&md5=119455cc50a5943f5685b615efd4c96b
This research explores the predictive capabilities of XGBoost (XGB) and Random Forest (RF) models for customer upsell responses, emphasizing the use of Explainable Artificial Intelligence (XAI) techniques to gain insights. Initially trained without hyperparameter tuning, both models were later optimized using 5-fold cross-validation. While RF consistently achieved high accuracy (0.99), XGB exhibited lower accuracy (0.85) yet demonstrated superior precision and recall. Post-tuning, XGB maintained its competitive edge despite a slight decrease in ROC-AUC scores (0.76 and 0.75 versus RF's 0.67 and 0.72), indicating proficiency in classifying positive cases. XAI techniques complemented XGB’s prediction, revealing significant predictors such as inactive duration in days, race (Chinese), total communication count, age, and active period in days. Lesser predictive value was attributed to factors such as race (Indian), gender (female), and region (northern). While the feature importance plot provided a broad overview, it did not detail specific attribute relationships to predictions. To address this, a summary violin plot was employed to illustrate how feature importance varies with actual values, enhancing the understanding of each feature's impact. Results indicated that longer inactivity periods negatively influenced predictions, while non-Chinese ethnicity, higher communication frequency, and younger age were associated with positive outcomes. Dependence plots further elucidated these relationships, highlighting how older non-Chinese customers and those with shorter inactive periods and frequent communication were more likely to accept offers. Local explanations using Shapley's force plot and LIME offered deeper insights into specific instances. Overall, the study underscores the complementary use of XAI techniques to understand a model’s predictions. © 2024, Politeknik Negeri Padang. All rights reserved.
Politeknik Negeri Padang
25499904
English
Article

author Abdullah R.S.; Nulizairos N.S.S.; Ariffin N.H.M.; Witarsyah D.; Maskat R.
spellingShingle Abdullah R.S.; Nulizairos N.S.S.; Ariffin N.H.M.; Witarsyah D.; Maskat R.
Predicting and Explaining Customer Response to Upselling in Telecommunications: A Malaysian Case Study
author_facet Abdullah R.S.; Nulizairos N.S.S.; Ariffin N.H.M.; Witarsyah D.; Maskat R.
author_sort Abdullah R.S.; Nulizairos N.S.S.; Ariffin N.H.M.; Witarsyah D.; Maskat R.
title Predicting and Explaining Customer Response to Upselling in Telecommunications: A Malaysian Case Study
title_short Predicting and Explaining Customer Response to Upselling in Telecommunications: A Malaysian Case Study
title_full Predicting and Explaining Customer Response to Upselling in Telecommunications: A Malaysian Case Study
title_fullStr Predicting and Explaining Customer Response to Upselling in Telecommunications: A Malaysian Case Study
title_full_unstemmed Predicting and Explaining Customer Response to Upselling in Telecommunications: A Malaysian Case Study
title_sort Predicting and Explaining Customer Response to Upselling in Telecommunications: A Malaysian Case Study
publishDate 2024
container_title International Journal on Informatics Visualization
container_volume 8
container_issue 2-Mar
doi_str_mv 10.62527/joiv.8.3-2.2823
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85211431962&doi=10.62527%2fjoiv.8.3-2.2823&partnerID=40&md5=119455cc50a5943f5685b615efd4c96b
description This research explores the predictive capabilities of XGBoost (XGB) and Random Forest (RF) models for customer upsell responses, emphasizing the use of Explainable Artificial Intelligence (XAI) techniques to gain insights. Initially trained without hyperparameter tuning, both models were later optimized using 5-fold cross-validation. While RF consistently achieved high accuracy (0.99), XGB exhibited lower accuracy (0.85) yet demonstrated superior precision and recall. Post-tuning, XGB maintained its competitive edge despite a slight decrease in ROC-AUC scores (0.76 and 0.75 versus RF's 0.67 and 0.72), indicating proficiency in classifying positive cases. XAI techniques complemented XGB’s prediction, revealing significant predictors such as inactive duration in days, race (Chinese), total communication count, age, and active period in days. Lesser predictive value was attributed to factors such as race (Indian), gender (female), and region (northern). While the feature importance plot provided a broad overview, it did not detail specific attribute relationships to predictions. To address this, a summary violin plot was employed to illustrate how feature importance varies with actual values, enhancing the understanding of each feature's impact. Results indicated that longer inactivity periods negatively influenced predictions, while non-Chinese ethnicity, higher communication frequency, and younger age were associated with positive outcomes. Dependence plots further elucidated these relationships, highlighting how older non-Chinese customers and those with shorter inactive periods and frequent communication were more likely to accept offers. Local explanations using Shapley's force plot and LIME offered deeper insights into specific instances. Overall, the study underscores the complementary use of XAI techniques to understand a model’s predictions. © 2024, Politeknik Negeri Padang. All rights reserved.
publisher Politeknik Negeri Padang
issn 25499904
language English
format Article
accesstype
record_format scopus
collection Scopus
_version_ 1820775437209436160