Predictive Factors for Diabetes Mellitus: Insights from Complete Blood Count Analysis; [Faktor Ramalan untuk Diabetes Melitus: Suatu Pandangan daripada Analisis Kiraan Darah Lengkap]

The 10th edition of the International Diabetes Federation reports that 537 million people worldwide had diabetes in 2021. In Southeast Asia, countries like Malaysia are facing a growing burden of diabetes. This highlights the urgent need for innovative and resourceful approaches to diabetes manageme...

Full description

Bibliographic Details
Published in:Sains Malaysiana
Main Author: Kenyang A.A.; Juhan N.; Zubairi Y.Z.; Azizan N.; Mun H.C.
Format: Article
Language:English
Published: Penerbit Universiti Kebangsaan Malaysia 2024
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85208472522&doi=10.17576%2fjsm-2024-5310-25&partnerID=40&md5=ed6ec9dc15a9ed08770960a1ef281c68
id 2-s2.0-85208472522
spelling 2-s2.0-85208472522
Kenyang A.A.; Juhan N.; Zubairi Y.Z.; Azizan N.; Mun H.C.
Predictive Factors for Diabetes Mellitus: Insights from Complete Blood Count Analysis; [Faktor Ramalan untuk Diabetes Melitus: Suatu Pandangan daripada Analisis Kiraan Darah Lengkap]
2024
Sains Malaysiana
53
10
10.17576/jsm-2024-5310-25
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85208472522&doi=10.17576%2fjsm-2024-5310-25&partnerID=40&md5=ed6ec9dc15a9ed08770960a1ef281c68
The 10th edition of the International Diabetes Federation reports that 537 million people worldwide had diabetes in 2021. In Southeast Asia, countries like Malaysia are facing a growing burden of diabetes. This highlights the urgent need for innovative and resourceful approaches to diabetes management. As the prevalence of diabetes continues to rise in these countries, tailored strategies are necessary. To identify and evaluate the potential prognostic indicators for diabetes mellitus, this study involved a dataset consisting of 500 entries, comprising demographic information and selected blood cells from the Complete Blood Count (CBC) test results obtained from the Clinical Laboratory Faculty of Medicine & Health Sciences, Universiti Malaysia Sabah. Using univariate and multivariate logistic regression analysis, the prognostic predictors for diabetes mellitus were identified. In the univariate analysis, all variables are statistically significance at 5% level of significance. However, at multivariate analysis, only age, mean corpuscular hemoglobin concentration (MCHC), white blood cells (WBC) and hematocrit (HCT) emerged as significant predictors of diabetes mellitus. Notably, the abnormal level in WBC exhibited the greatest association with diabetes mellitus, reflecting a 114.7% increased risk compared to a normal WBC level. The statistic value obtained from Hosmer-Lemeshow was 0.944 indicating a well-fitting model. Additionally, the receiver operator characteristic (ROC) curve has a value of 0.7, indicating a strong performance of the model. In conclusion, CBC parameters can be accurate markers and useful in assisting clinical decision-making when properly applied and interpreted. © 2024 Penerbit Universiti Kebangsaan Malaysia. All rights reserved.
Penerbit Universiti Kebangsaan Malaysia
1266039
English
Article

author Kenyang A.A.; Juhan N.; Zubairi Y.Z.; Azizan N.; Mun H.C.
spellingShingle Kenyang A.A.; Juhan N.; Zubairi Y.Z.; Azizan N.; Mun H.C.
Predictive Factors for Diabetes Mellitus: Insights from Complete Blood Count Analysis; [Faktor Ramalan untuk Diabetes Melitus: Suatu Pandangan daripada Analisis Kiraan Darah Lengkap]
author_facet Kenyang A.A.; Juhan N.; Zubairi Y.Z.; Azizan N.; Mun H.C.
author_sort Kenyang A.A.; Juhan N.; Zubairi Y.Z.; Azizan N.; Mun H.C.
title Predictive Factors for Diabetes Mellitus: Insights from Complete Blood Count Analysis; [Faktor Ramalan untuk Diabetes Melitus: Suatu Pandangan daripada Analisis Kiraan Darah Lengkap]
title_short Predictive Factors for Diabetes Mellitus: Insights from Complete Blood Count Analysis; [Faktor Ramalan untuk Diabetes Melitus: Suatu Pandangan daripada Analisis Kiraan Darah Lengkap]
title_full Predictive Factors for Diabetes Mellitus: Insights from Complete Blood Count Analysis; [Faktor Ramalan untuk Diabetes Melitus: Suatu Pandangan daripada Analisis Kiraan Darah Lengkap]
title_fullStr Predictive Factors for Diabetes Mellitus: Insights from Complete Blood Count Analysis; [Faktor Ramalan untuk Diabetes Melitus: Suatu Pandangan daripada Analisis Kiraan Darah Lengkap]
title_full_unstemmed Predictive Factors for Diabetes Mellitus: Insights from Complete Blood Count Analysis; [Faktor Ramalan untuk Diabetes Melitus: Suatu Pandangan daripada Analisis Kiraan Darah Lengkap]
title_sort Predictive Factors for Diabetes Mellitus: Insights from Complete Blood Count Analysis; [Faktor Ramalan untuk Diabetes Melitus: Suatu Pandangan daripada Analisis Kiraan Darah Lengkap]
publishDate 2024
container_title Sains Malaysiana
container_volume 53
container_issue 10
doi_str_mv 10.17576/jsm-2024-5310-25
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85208472522&doi=10.17576%2fjsm-2024-5310-25&partnerID=40&md5=ed6ec9dc15a9ed08770960a1ef281c68
description The 10th edition of the International Diabetes Federation reports that 537 million people worldwide had diabetes in 2021. In Southeast Asia, countries like Malaysia are facing a growing burden of diabetes. This highlights the urgent need for innovative and resourceful approaches to diabetes management. As the prevalence of diabetes continues to rise in these countries, tailored strategies are necessary. To identify and evaluate the potential prognostic indicators for diabetes mellitus, this study involved a dataset consisting of 500 entries, comprising demographic information and selected blood cells from the Complete Blood Count (CBC) test results obtained from the Clinical Laboratory Faculty of Medicine & Health Sciences, Universiti Malaysia Sabah. Using univariate and multivariate logistic regression analysis, the prognostic predictors for diabetes mellitus were identified. In the univariate analysis, all variables are statistically significance at 5% level of significance. However, at multivariate analysis, only age, mean corpuscular hemoglobin concentration (MCHC), white blood cells (WBC) and hematocrit (HCT) emerged as significant predictors of diabetes mellitus. Notably, the abnormal level in WBC exhibited the greatest association with diabetes mellitus, reflecting a 114.7% increased risk compared to a normal WBC level. The statistic value obtained from Hosmer-Lemeshow was 0.944 indicating a well-fitting model. Additionally, the receiver operator characteristic (ROC) curve has a value of 0.7, indicating a strong performance of the model. In conclusion, CBC parameters can be accurate markers and useful in assisting clinical decision-making when properly applied and interpreted. © 2024 Penerbit Universiti Kebangsaan Malaysia. All rights reserved.
publisher Penerbit Universiti Kebangsaan Malaysia
issn 1266039
language English
format Article
accesstype
record_format scopus
collection Scopus
_version_ 1818940551200768000