Brain Lesion Segmentation Using Deep Learning and Its Role in Computer-Aided Differential Diagnosis of Multiple Sclerosis and Neuromyelitis Optica
Neurological disorders are debilitating diseases and cause significant morbidity worldwide, with some resulting in mortality. Magnetic Resonance Imaging (MRI) is the prime modality to evaluate most of the diseases involving the brain. The organic diseases of the brain show lesions which are well-app...
Published in: | IEEE Access |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Institute of Electrical and Electronics Engineers Inc.
2024
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85208235944&doi=10.1109%2fACCESS.2024.3487784&partnerID=40&md5=dc893ad0bee46bc7152070312c11fcfa |
id |
2-s2.0-85208235944 |
---|---|
spelling |
2-s2.0-85208235944 Memon K.; Yahya N.; Siddiqui S.; Hashim H.; Remli R.; Mustapha Mohd Mustapha A.-W.; Zuki Yusoff M.; Saad Azhar Ali S. Brain Lesion Segmentation Using Deep Learning and Its Role in Computer-Aided Differential Diagnosis of Multiple Sclerosis and Neuromyelitis Optica 2024 IEEE Access 12 10.1109/ACCESS.2024.3487784 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85208235944&doi=10.1109%2fACCESS.2024.3487784&partnerID=40&md5=dc893ad0bee46bc7152070312c11fcfa Neurological disorders are debilitating diseases and cause significant morbidity worldwide, with some resulting in mortality. Magnetic Resonance Imaging (MRI) is the prime modality to evaluate most of the diseases involving the brain. The organic diseases of the brain show lesions which are well-appreciated on MRI, but require radiologists and medical experts for delineation. This is crucial for the differential diagnosis of diseases producing similar plaque patterns on the brain. Artificial Intelligence (AI) techniques can help in automatic brain lesion segmentation using massive publicly available data to train Computer-Aided Differential Diagnosis (CADD) algorithms. The accuracy of such CADD algorithms hugely relies on the accuracy of lesion segmentation Deep Learning (DL) models. In this research, DeepLabV3+ architecture is used for semantic segmentation of brain lesions using multiple publicly available datasets. In order to enhance the accuracy, additional ground truth (GT) lesion masks from MICCAI-21 dataset were obtained from a consultant radiologist, and used for training and testing. In addition, the developed algorithm underwent testing using 5 Multiple Sclerosis (MS) and 5 Neuromyelitis Optica (NMO) cases obtained from UiTM Hospital, and 35 MS and 27 NMO cases from HCTM Malaysia, and annotated by radiologists. The Dice score of the trained DL model on test data from MICCAI-21, MICCAI-16, Baghdad Teaching Hospital dataset, HCTM, and UiTM data is 0.7304, 0.6426, 0.4117, 0.5308, and 0.4951, respectively. The model is embedded in an app called NeuroImaging Lesion Extractor (NILE) and is available for public use. This app can serve as an assistive tool for experts in developing differential diagnosis algorithms for demyelinating diseases like MS and NMO. © 2013 IEEE. Institute of Electrical and Electronics Engineers Inc. 21693536 English Article All Open Access; Gold Open Access |
author |
Memon K.; Yahya N.; Siddiqui S.; Hashim H.; Remli R.; Mustapha Mohd Mustapha A.-W.; Zuki Yusoff M.; Saad Azhar Ali S. |
spellingShingle |
Memon K.; Yahya N.; Siddiqui S.; Hashim H.; Remli R.; Mustapha Mohd Mustapha A.-W.; Zuki Yusoff M.; Saad Azhar Ali S. Brain Lesion Segmentation Using Deep Learning and Its Role in Computer-Aided Differential Diagnosis of Multiple Sclerosis and Neuromyelitis Optica |
author_facet |
Memon K.; Yahya N.; Siddiqui S.; Hashim H.; Remli R.; Mustapha Mohd Mustapha A.-W.; Zuki Yusoff M.; Saad Azhar Ali S. |
author_sort |
Memon K.; Yahya N.; Siddiqui S.; Hashim H.; Remli R.; Mustapha Mohd Mustapha A.-W.; Zuki Yusoff M.; Saad Azhar Ali S. |
title |
Brain Lesion Segmentation Using Deep Learning and Its Role in Computer-Aided Differential Diagnosis of Multiple Sclerosis and Neuromyelitis Optica |
title_short |
Brain Lesion Segmentation Using Deep Learning and Its Role in Computer-Aided Differential Diagnosis of Multiple Sclerosis and Neuromyelitis Optica |
title_full |
Brain Lesion Segmentation Using Deep Learning and Its Role in Computer-Aided Differential Diagnosis of Multiple Sclerosis and Neuromyelitis Optica |
title_fullStr |
Brain Lesion Segmentation Using Deep Learning and Its Role in Computer-Aided Differential Diagnosis of Multiple Sclerosis and Neuromyelitis Optica |
title_full_unstemmed |
Brain Lesion Segmentation Using Deep Learning and Its Role in Computer-Aided Differential Diagnosis of Multiple Sclerosis and Neuromyelitis Optica |
title_sort |
Brain Lesion Segmentation Using Deep Learning and Its Role in Computer-Aided Differential Diagnosis of Multiple Sclerosis and Neuromyelitis Optica |
publishDate |
2024 |
container_title |
IEEE Access |
container_volume |
12 |
container_issue |
|
doi_str_mv |
10.1109/ACCESS.2024.3487784 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85208235944&doi=10.1109%2fACCESS.2024.3487784&partnerID=40&md5=dc893ad0bee46bc7152070312c11fcfa |
description |
Neurological disorders are debilitating diseases and cause significant morbidity worldwide, with some resulting in mortality. Magnetic Resonance Imaging (MRI) is the prime modality to evaluate most of the diseases involving the brain. The organic diseases of the brain show lesions which are well-appreciated on MRI, but require radiologists and medical experts for delineation. This is crucial for the differential diagnosis of diseases producing similar plaque patterns on the brain. Artificial Intelligence (AI) techniques can help in automatic brain lesion segmentation using massive publicly available data to train Computer-Aided Differential Diagnosis (CADD) algorithms. The accuracy of such CADD algorithms hugely relies on the accuracy of lesion segmentation Deep Learning (DL) models. In this research, DeepLabV3+ architecture is used for semantic segmentation of brain lesions using multiple publicly available datasets. In order to enhance the accuracy, additional ground truth (GT) lesion masks from MICCAI-21 dataset were obtained from a consultant radiologist, and used for training and testing. In addition, the developed algorithm underwent testing using 5 Multiple Sclerosis (MS) and 5 Neuromyelitis Optica (NMO) cases obtained from UiTM Hospital, and 35 MS and 27 NMO cases from HCTM Malaysia, and annotated by radiologists. The Dice score of the trained DL model on test data from MICCAI-21, MICCAI-16, Baghdad Teaching Hospital dataset, HCTM, and UiTM data is 0.7304, 0.6426, 0.4117, 0.5308, and 0.4951, respectively. The model is embedded in an app called NeuroImaging Lesion Extractor (NILE) and is available for public use. This app can serve as an assistive tool for experts in developing differential diagnosis algorithms for demyelinating diseases like MS and NMO. © 2013 IEEE. |
publisher |
Institute of Electrical and Electronics Engineers Inc. |
issn |
21693536 |
language |
English |
format |
Article |
accesstype |
All Open Access; Gold Open Access |
record_format |
scopus |
collection |
Scopus |
_version_ |
1820775439581315072 |