Advancements in Metaverse Security: Phishing Website Detection Through Optimal Feature Selection and Random Forest Classifier

This chapter proposes a novel approach for detecting phishing websites within the metaverse, leveraging the Optimal Feature Selection and the Random Forest classifier. This framework addresses the critical challenge of safeguarding users from deceptive tactics in virtual environments. By analyzing w...

Full description

Bibliographic Details
Published in:Metaverse Security Paradigms
Main Author: Kumar A.V.S.; Sivakumar P.; Chaturvedi A.; Musirin I.B.; Giridhar Akula V.S.; Suganya R.V.; Vanishree G.; Pillai R.H.; Jagadamba G.; Kaur G.; Srinivasulu A.; Dulhare U.N.
Format: Book chapter
Language:English
Published: IGI Global 2024
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205530972&doi=10.4018%2f979-8-3693-3824-7.ch014&partnerID=40&md5=bff1eece24920488dff5bccffd00396f
id 2-s2.0-85205530972
spelling 2-s2.0-85205530972
Kumar A.V.S.; Sivakumar P.; Chaturvedi A.; Musirin I.B.; Giridhar Akula V.S.; Suganya R.V.; Vanishree G.; Pillai R.H.; Jagadamba G.; Kaur G.; Srinivasulu A.; Dulhare U.N.
Advancements in Metaverse Security: Phishing Website Detection Through Optimal Feature Selection and Random Forest Classifier
2024
Metaverse Security Paradigms


10.4018/979-8-3693-3824-7.ch014
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205530972&doi=10.4018%2f979-8-3693-3824-7.ch014&partnerID=40&md5=bff1eece24920488dff5bccffd00396f
This chapter proposes a novel approach for detecting phishing websites within the metaverse, leveraging the Optimal Feature Selection and the Random Forest classifier. This framework addresses the critical challenge of safeguarding users from deceptive tactics in virtual environments. By analyzing website characteristics and identifying the most informative features, the proposed method enhances the accuracy and efficiency of phishing detection in the metaverse, contributing to a more secure and trustworthy virtual landscape. The chapter delves into the methodology, including the chosen feature selection technique and the Random Forest classifier, followed by implementation details, experimental results evaluating the model's performance, and a discussion on the implications for future metaverse security research. © 2024, IGI Global. All Right Reserved.
IGI Global

English
Book chapter

author Kumar A.V.S.; Sivakumar P.; Chaturvedi A.; Musirin I.B.; Giridhar Akula V.S.; Suganya R.V.; Vanishree G.; Pillai R.H.; Jagadamba G.; Kaur G.; Srinivasulu A.; Dulhare U.N.
spellingShingle Kumar A.V.S.; Sivakumar P.; Chaturvedi A.; Musirin I.B.; Giridhar Akula V.S.; Suganya R.V.; Vanishree G.; Pillai R.H.; Jagadamba G.; Kaur G.; Srinivasulu A.; Dulhare U.N.
Advancements in Metaverse Security: Phishing Website Detection Through Optimal Feature Selection and Random Forest Classifier
author_facet Kumar A.V.S.; Sivakumar P.; Chaturvedi A.; Musirin I.B.; Giridhar Akula V.S.; Suganya R.V.; Vanishree G.; Pillai R.H.; Jagadamba G.; Kaur G.; Srinivasulu A.; Dulhare U.N.
author_sort Kumar A.V.S.; Sivakumar P.; Chaturvedi A.; Musirin I.B.; Giridhar Akula V.S.; Suganya R.V.; Vanishree G.; Pillai R.H.; Jagadamba G.; Kaur G.; Srinivasulu A.; Dulhare U.N.
title Advancements in Metaverse Security: Phishing Website Detection Through Optimal Feature Selection and Random Forest Classifier
title_short Advancements in Metaverse Security: Phishing Website Detection Through Optimal Feature Selection and Random Forest Classifier
title_full Advancements in Metaverse Security: Phishing Website Detection Through Optimal Feature Selection and Random Forest Classifier
title_fullStr Advancements in Metaverse Security: Phishing Website Detection Through Optimal Feature Selection and Random Forest Classifier
title_full_unstemmed Advancements in Metaverse Security: Phishing Website Detection Through Optimal Feature Selection and Random Forest Classifier
title_sort Advancements in Metaverse Security: Phishing Website Detection Through Optimal Feature Selection and Random Forest Classifier
publishDate 2024
container_title Metaverse Security Paradigms
container_volume
container_issue
doi_str_mv 10.4018/979-8-3693-3824-7.ch014
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205530972&doi=10.4018%2f979-8-3693-3824-7.ch014&partnerID=40&md5=bff1eece24920488dff5bccffd00396f
description This chapter proposes a novel approach for detecting phishing websites within the metaverse, leveraging the Optimal Feature Selection and the Random Forest classifier. This framework addresses the critical challenge of safeguarding users from deceptive tactics in virtual environments. By analyzing website characteristics and identifying the most informative features, the proposed method enhances the accuracy and efficiency of phishing detection in the metaverse, contributing to a more secure and trustworthy virtual landscape. The chapter delves into the methodology, including the chosen feature selection technique and the Random Forest classifier, followed by implementation details, experimental results evaluating the model's performance, and a discussion on the implications for future metaverse security research. © 2024, IGI Global. All Right Reserved.
publisher IGI Global
issn
language English
format Book chapter
accesstype
record_format scopus
collection Scopus
_version_ 1820775440636182528