Advancements in Metaverse Security: Phishing Website Detection Through Optimal Feature Selection and Random Forest Classifier
This chapter proposes a novel approach for detecting phishing websites within the metaverse, leveraging the Optimal Feature Selection and the Random Forest classifier. This framework addresses the critical challenge of safeguarding users from deceptive tactics in virtual environments. By analyzing w...
Published in: | Metaverse Security Paradigms |
---|---|
Main Author: | |
Format: | Book chapter |
Language: | English |
Published: |
IGI Global
2024
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205530972&doi=10.4018%2f979-8-3693-3824-7.ch014&partnerID=40&md5=bff1eece24920488dff5bccffd00396f |
id |
2-s2.0-85205530972 |
---|---|
spelling |
2-s2.0-85205530972 Kumar A.V.S.; Sivakumar P.; Chaturvedi A.; Musirin I.B.; Giridhar Akula V.S.; Suganya R.V.; Vanishree G.; Pillai R.H.; Jagadamba G.; Kaur G.; Srinivasulu A.; Dulhare U.N. Advancements in Metaverse Security: Phishing Website Detection Through Optimal Feature Selection and Random Forest Classifier 2024 Metaverse Security Paradigms 10.4018/979-8-3693-3824-7.ch014 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205530972&doi=10.4018%2f979-8-3693-3824-7.ch014&partnerID=40&md5=bff1eece24920488dff5bccffd00396f This chapter proposes a novel approach for detecting phishing websites within the metaverse, leveraging the Optimal Feature Selection and the Random Forest classifier. This framework addresses the critical challenge of safeguarding users from deceptive tactics in virtual environments. By analyzing website characteristics and identifying the most informative features, the proposed method enhances the accuracy and efficiency of phishing detection in the metaverse, contributing to a more secure and trustworthy virtual landscape. The chapter delves into the methodology, including the chosen feature selection technique and the Random Forest classifier, followed by implementation details, experimental results evaluating the model's performance, and a discussion on the implications for future metaverse security research. © 2024, IGI Global. All Right Reserved. IGI Global English Book chapter |
author |
Kumar A.V.S.; Sivakumar P.; Chaturvedi A.; Musirin I.B.; Giridhar Akula V.S.; Suganya R.V.; Vanishree G.; Pillai R.H.; Jagadamba G.; Kaur G.; Srinivasulu A.; Dulhare U.N. |
spellingShingle |
Kumar A.V.S.; Sivakumar P.; Chaturvedi A.; Musirin I.B.; Giridhar Akula V.S.; Suganya R.V.; Vanishree G.; Pillai R.H.; Jagadamba G.; Kaur G.; Srinivasulu A.; Dulhare U.N. Advancements in Metaverse Security: Phishing Website Detection Through Optimal Feature Selection and Random Forest Classifier |
author_facet |
Kumar A.V.S.; Sivakumar P.; Chaturvedi A.; Musirin I.B.; Giridhar Akula V.S.; Suganya R.V.; Vanishree G.; Pillai R.H.; Jagadamba G.; Kaur G.; Srinivasulu A.; Dulhare U.N. |
author_sort |
Kumar A.V.S.; Sivakumar P.; Chaturvedi A.; Musirin I.B.; Giridhar Akula V.S.; Suganya R.V.; Vanishree G.; Pillai R.H.; Jagadamba G.; Kaur G.; Srinivasulu A.; Dulhare U.N. |
title |
Advancements in Metaverse Security: Phishing Website Detection Through Optimal Feature Selection and Random Forest Classifier |
title_short |
Advancements in Metaverse Security: Phishing Website Detection Through Optimal Feature Selection and Random Forest Classifier |
title_full |
Advancements in Metaverse Security: Phishing Website Detection Through Optimal Feature Selection and Random Forest Classifier |
title_fullStr |
Advancements in Metaverse Security: Phishing Website Detection Through Optimal Feature Selection and Random Forest Classifier |
title_full_unstemmed |
Advancements in Metaverse Security: Phishing Website Detection Through Optimal Feature Selection and Random Forest Classifier |
title_sort |
Advancements in Metaverse Security: Phishing Website Detection Through Optimal Feature Selection and Random Forest Classifier |
publishDate |
2024 |
container_title |
Metaverse Security Paradigms |
container_volume |
|
container_issue |
|
doi_str_mv |
10.4018/979-8-3693-3824-7.ch014 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205530972&doi=10.4018%2f979-8-3693-3824-7.ch014&partnerID=40&md5=bff1eece24920488dff5bccffd00396f |
description |
This chapter proposes a novel approach for detecting phishing websites within the metaverse, leveraging the Optimal Feature Selection and the Random Forest classifier. This framework addresses the critical challenge of safeguarding users from deceptive tactics in virtual environments. By analyzing website characteristics and identifying the most informative features, the proposed method enhances the accuracy and efficiency of phishing detection in the metaverse, contributing to a more secure and trustworthy virtual landscape. The chapter delves into the methodology, including the chosen feature selection technique and the Random Forest classifier, followed by implementation details, experimental results evaluating the model's performance, and a discussion on the implications for future metaverse security research. © 2024, IGI Global. All Right Reserved. |
publisher |
IGI Global |
issn |
|
language |
English |
format |
Book chapter |
accesstype |
|
record_format |
scopus |
collection |
Scopus |
_version_ |
1820775440636182528 |