Summary: | Fused Deposition Modeling (FDM) is an additive manufacturing technique that constructs objects layer by layer by depositing thermoplastic material through a nozzle. This method allows for the creation of intricate, custom designs that are often difficult to achieve with traditional manufacturing processes. To enhance the mechanical properties of composite materials, cellulose is used as a filler, which has shown significant potential in improving the physical and mechanical characteristics of polymer composites. In this study, waste paper is used to extract cellulose, resulting in microcrystalline cellulose (MCC), which is then used to reinforce the PLA matrix. Composite filaments containing different proportions of MCC (1%, 2%, and 3% by weight) are produced using a twin-screw extruder for subsequent 3D printing. The study examines the impact of MCC content on the structural, morphological, and thermal properties of the filaments and 3D-printed objects. Characterization methods include scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and tensile tests. The results show that the addition of MCC does not cause chemical changes. For the 3D-printed samples, the tensile strength of neat PLA is significantly improved with the addition of 1% MCC and continues to increase with higher MCC concentrations. © 2024 King Mongkut’s University of Technology North Bangkok. All Rights Reserved.
|