Enhancing solar energy conversion efficiency: Thermophysical property predicting of MXene/Graphene hybrid nanofluids via bayesian-optimized artificial neural networks
Accurately predicting thermo-physical properties (TPPs) of MXene/graphene-based nanofluids is crucial for photovoltaic/thermal solar systems, driving focused research on developing precise TPP predictive models. This study presents optimized multi-layer perceptron neural network (MLPNN) models, leve...
Published in: | Results in Engineering |
---|---|
Main Author: | jasim D.J.; Rajab H.; Alizadeh A.; Sharma K.; Ahmed M.; Kassim M.; AbdulAmeer S.; Alwan A.A.; Salahshour S.; Maleki H. |
Format: | Article |
Language: | English |
Published: |
Elsevier B.V.
2024
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85203523133&doi=10.1016%2fj.rineng.2024.102858&partnerID=40&md5=a24c870224e28b4a1a7056ad518c0165 |
Similar Items
-
Artificial neural network hyperparameters optimization for predicting the thermal conductivity of MXene/graphene nanofluids
by: Shang Y.; Hammoodi K.A.; Alizadeh A.; Sharma K.; jasim D.J.; Rajab H.; Ahmed M.; Kassim M.; Maleki H.; Salahshour S.
Published: (2024) -
Artificial neural network hyperparameters optimization for predicting the thermal conductivity of MXene/graphene nanofluids
by: Shang, et al.
Published: (2024) -
Optimizing Gaussian process regression (GPR) hyperparameters with three metaheuristic algorithms for viscosity prediction of suspensions containing microencapsulated PCMs
by: Hai T.; Basem A.; Alizadeh A.; Sharma K.; jasim D.J.; Rajab H.; Ahmed M.; Kassim M.; Singh N.S.S.; Maleki H.
Published: (2024) -
Thermophysical Correlation of Hybrid Nanofluids (HNFs): A Thematic Review
by: Mokhtar M.; Kasim A.R.M.; Waini I.; Nordin N.S.; Al-Sharifi H.A.M.
Published: (2024) -
Analyzing geometric parameters in inclined enclosures filled with magnetic nanofluid using artificial neural networks
by: Hai T.; Alsharif S.; Ali M.A.; Singh P.K.; Alizadeh A.
Published: (2023)