New Silver(I) Complexes as Achromatic Sensitizers in Solar Cell Applications

The design, synthesis, and spectroscopic characterization of [Ag(P(o-C6H4OCH3)3)(NO3)]2 (1) and [Ag(P(o-C6H4OCH3)3)2][NO3] (2) were conducted to investigate the efficiency of the fabricated solar cell devices. The slow evaporation technique proved effective in growing the colorless crystals of the s...

Full description

Bibliographic Details
Published in:Applied Organometallic Chemistry
Main Author: Rajasagaran R.; Redzuan S.; Hamali M.; Mohd Tajuddin A.; Alsaee S.; Rosli M.; Samsuri S.; Sirat S.; Arshad S.
Format: Article
Language:English
Published: John Wiley and Sons Ltd 2024
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85203080950&doi=10.1002%2faoc.7744&partnerID=40&md5=83bee8c90cda5ee3b6174535a45ec215
id 2-s2.0-85203080950
spelling 2-s2.0-85203080950
Rajasagaran R.; Redzuan S.; Hamali M.; Mohd Tajuddin A.; Alsaee S.; Rosli M.; Samsuri S.; Sirat S.; Arshad S.
New Silver(I) Complexes as Achromatic Sensitizers in Solar Cell Applications
2024
Applied Organometallic Chemistry
38
12
10.1002/aoc.7744
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85203080950&doi=10.1002%2faoc.7744&partnerID=40&md5=83bee8c90cda5ee3b6174535a45ec215
The design, synthesis, and spectroscopic characterization of [Ag(P(o-C6H4OCH3)3)(NO3)]2 (1) and [Ag(P(o-C6H4OCH3)3)2][NO3] (2) were conducted to investigate the efficiency of the fabricated solar cell devices. The slow evaporation technique proved effective in growing the colorless crystals of the silver(I) complexes. Spectroscopic analyses including Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and ultraviolet–visible (UV–Vis) studies were carried out to elucidate the chemical structure and absorption properties of the compounds. The chemical composition and existence of intermolecular interactions in 1 and 2 were disclosed via the single-crystal x-ray diffraction method. The side-to-side arrangement of molecules in 1 and 2 was evident from the crystal packing analysis, in which the molecules in both compounds were linked together by C–H···O and C–H···π contacts. The silver(I) complexes exhibited maximum absorption wavelength (287–288 nm) within the ultraviolet region, where both compounds had comparable high energy band gap values ranging from 4.15 to 4.16 eV. Moreover, both compounds possess appropriate HOMO–LUMO energy levels that facilitate effective electron injection and dye regeneration processes in dye-sensitized solar cell (DSSC) applications. Photophysical characterization techniques, field-emission scanning electron microscopy (FESEM), and energy-dispersive x-ray (EDX) spectroscopy studies were employed to assess the morphological characteristics and elemental composition of the silver(I) complexes on TiO2. Compound 2 exceeded 1 in terms of solar cell efficiency, 2 (η = 3.34%) > 1 (η = 0.66%) due to the complex being in ionic form and composed of the mononuclear [Ag(P(o-C6H4OCH3)3)2]+ cation [NO3]− anion. © 2024 John Wiley & Sons Ltd.
John Wiley and Sons Ltd
2682605
English
Article

author Rajasagaran R.; Redzuan S.; Hamali M.; Mohd Tajuddin A.; Alsaee S.; Rosli M.; Samsuri S.; Sirat S.; Arshad S.
spellingShingle Rajasagaran R.; Redzuan S.; Hamali M.; Mohd Tajuddin A.; Alsaee S.; Rosli M.; Samsuri S.; Sirat S.; Arshad S.
New Silver(I) Complexes as Achromatic Sensitizers in Solar Cell Applications
author_facet Rajasagaran R.; Redzuan S.; Hamali M.; Mohd Tajuddin A.; Alsaee S.; Rosli M.; Samsuri S.; Sirat S.; Arshad S.
author_sort Rajasagaran R.; Redzuan S.; Hamali M.; Mohd Tajuddin A.; Alsaee S.; Rosli M.; Samsuri S.; Sirat S.; Arshad S.
title New Silver(I) Complexes as Achromatic Sensitizers in Solar Cell Applications
title_short New Silver(I) Complexes as Achromatic Sensitizers in Solar Cell Applications
title_full New Silver(I) Complexes as Achromatic Sensitizers in Solar Cell Applications
title_fullStr New Silver(I) Complexes as Achromatic Sensitizers in Solar Cell Applications
title_full_unstemmed New Silver(I) Complexes as Achromatic Sensitizers in Solar Cell Applications
title_sort New Silver(I) Complexes as Achromatic Sensitizers in Solar Cell Applications
publishDate 2024
container_title Applied Organometallic Chemistry
container_volume 38
container_issue 12
doi_str_mv 10.1002/aoc.7744
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85203080950&doi=10.1002%2faoc.7744&partnerID=40&md5=83bee8c90cda5ee3b6174535a45ec215
description The design, synthesis, and spectroscopic characterization of [Ag(P(o-C6H4OCH3)3)(NO3)]2 (1) and [Ag(P(o-C6H4OCH3)3)2][NO3] (2) were conducted to investigate the efficiency of the fabricated solar cell devices. The slow evaporation technique proved effective in growing the colorless crystals of the silver(I) complexes. Spectroscopic analyses including Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and ultraviolet–visible (UV–Vis) studies were carried out to elucidate the chemical structure and absorption properties of the compounds. The chemical composition and existence of intermolecular interactions in 1 and 2 were disclosed via the single-crystal x-ray diffraction method. The side-to-side arrangement of molecules in 1 and 2 was evident from the crystal packing analysis, in which the molecules in both compounds were linked together by C–H···O and C–H···π contacts. The silver(I) complexes exhibited maximum absorption wavelength (287–288 nm) within the ultraviolet region, where both compounds had comparable high energy band gap values ranging from 4.15 to 4.16 eV. Moreover, both compounds possess appropriate HOMO–LUMO energy levels that facilitate effective electron injection and dye regeneration processes in dye-sensitized solar cell (DSSC) applications. Photophysical characterization techniques, field-emission scanning electron microscopy (FESEM), and energy-dispersive x-ray (EDX) spectroscopy studies were employed to assess the morphological characteristics and elemental composition of the silver(I) complexes on TiO2. Compound 2 exceeded 1 in terms of solar cell efficiency, 2 (η = 3.34%) > 1 (η = 0.66%) due to the complex being in ionic form and composed of the mononuclear [Ag(P(o-C6H4OCH3)3)2]+ cation [NO3]− anion. © 2024 John Wiley & Sons Ltd.
publisher John Wiley and Sons Ltd
issn 2682605
language English
format Article
accesstype
record_format scopus
collection Scopus
_version_ 1818940550384975872