The Accuracy and Error of Ground Penetrating Radar System with Machine Learning Support Vector Regression Technique

Ground penetrating radar (GPR) is a non-destructive evaluation technique which involve knowledge of electromagnetic theory. Basically, there are three types of radar systems that are often applied in radar applications such as Monostatic, Bistatic, and Multi-static radar. Besides, in order to detect...

Full description

Bibliographic Details
Published in:Journal of Advanced Research in Applied Sciences and Engineering Technology
Main Author: Wei C.C.; Karim M.N.A.; Seng L.Y.; Ghazali M.D.M.
Format: Article
Language:English
Published: Semarak Ilmu Publishing 2025
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85202154235&doi=10.37934%2faraset.50.1.191202&partnerID=40&md5=db082fc3af9435a0faf9a85bf6b5211a
id 2-s2.0-85202154235
spelling 2-s2.0-85202154235
Wei C.C.; Karim M.N.A.; Seng L.Y.; Ghazali M.D.M.
The Accuracy and Error of Ground Penetrating Radar System with Machine Learning Support Vector Regression Technique
2025
Journal of Advanced Research in Applied Sciences and Engineering Technology
50
1
10.37934/araset.50.1.191202
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85202154235&doi=10.37934%2faraset.50.1.191202&partnerID=40&md5=db082fc3af9435a0faf9a85bf6b5211a
Ground penetrating radar (GPR) is a non-destructive evaluation technique which involve knowledge of electromagnetic theory. Basically, there are three types of radar systems that are often applied in radar applications such as Monostatic, Bistatic, and Multi-static radar. Besides, in order to detect and locate the underground object, various technique has been implemented to cater issues in GPR such as clutter issues, inaccuracy in detect and locate the target object, signal loss, properties of soil and etc. In this paper, machine learning (ML) with support vector regression (SVR) is applied in GPR system using copper plat as buried object. Evaluation and validation on this method was carried out in term of S-Parameter and operating frequency. The scope of this work focuses on data analysis for the accuracy of object detection, validation graph and the error signal processing of Machine Learning in GPR system. The result of the experiment was shows low error, the validation point fit to hyperplane line (validation graph). Therefore, the output that expected for this research is validate the low false alarm rate of machine learning in GPR system. © 2025, Semarak Ilmu Publishing. All rights reserved.
Semarak Ilmu Publishing
24621943
English
Article
All Open Access; Hybrid Gold Open Access
author Wei C.C.; Karim M.N.A.; Seng L.Y.; Ghazali M.D.M.
spellingShingle Wei C.C.; Karim M.N.A.; Seng L.Y.; Ghazali M.D.M.
The Accuracy and Error of Ground Penetrating Radar System with Machine Learning Support Vector Regression Technique
author_facet Wei C.C.; Karim M.N.A.; Seng L.Y.; Ghazali M.D.M.
author_sort Wei C.C.; Karim M.N.A.; Seng L.Y.; Ghazali M.D.M.
title The Accuracy and Error of Ground Penetrating Radar System with Machine Learning Support Vector Regression Technique
title_short The Accuracy and Error of Ground Penetrating Radar System with Machine Learning Support Vector Regression Technique
title_full The Accuracy and Error of Ground Penetrating Radar System with Machine Learning Support Vector Regression Technique
title_fullStr The Accuracy and Error of Ground Penetrating Radar System with Machine Learning Support Vector Regression Technique
title_full_unstemmed The Accuracy and Error of Ground Penetrating Radar System with Machine Learning Support Vector Regression Technique
title_sort The Accuracy and Error of Ground Penetrating Radar System with Machine Learning Support Vector Regression Technique
publishDate 2025
container_title Journal of Advanced Research in Applied Sciences and Engineering Technology
container_volume 50
container_issue 1
doi_str_mv 10.37934/araset.50.1.191202
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85202154235&doi=10.37934%2faraset.50.1.191202&partnerID=40&md5=db082fc3af9435a0faf9a85bf6b5211a
description Ground penetrating radar (GPR) is a non-destructive evaluation technique which involve knowledge of electromagnetic theory. Basically, there are three types of radar systems that are often applied in radar applications such as Monostatic, Bistatic, and Multi-static radar. Besides, in order to detect and locate the underground object, various technique has been implemented to cater issues in GPR such as clutter issues, inaccuracy in detect and locate the target object, signal loss, properties of soil and etc. In this paper, machine learning (ML) with support vector regression (SVR) is applied in GPR system using copper plat as buried object. Evaluation and validation on this method was carried out in term of S-Parameter and operating frequency. The scope of this work focuses on data analysis for the accuracy of object detection, validation graph and the error signal processing of Machine Learning in GPR system. The result of the experiment was shows low error, the validation point fit to hyperplane line (validation graph). Therefore, the output that expected for this research is validate the low false alarm rate of machine learning in GPR system. © 2025, Semarak Ilmu Publishing. All rights reserved.
publisher Semarak Ilmu Publishing
issn 24621943
language English
format Article
accesstype All Open Access; Hybrid Gold Open Access
record_format scopus
collection Scopus
_version_ 1812871793135845376