On local distance antimagic chromatic number of graphs disjoint union with 1-regular graphs
Let G be a graph on p vertices and q edges with no isolated vertices. A bijection f: V → {1, 2, 3,.., p} is called local distance antimagic labeling, if for any two adjacent vertices u and v, we have w(u) 6= w(v), where (Formula presented). The local distance antimagic chromatic number χlda(G) is de...
Published in: | Proyecciones |
---|---|
Main Author: | Priyadharshini V.; Perrichiappan A.; Nalliah M.; Lau G.-C. |
Format: | Article |
Language: | English |
Published: |
Universidad Catolica del Norte
2024
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85201864896&doi=10.22199%2fissn.0717-6279-5963&partnerID=40&md5=0cb31e41c1f07d89f2b6e4b0cfff76ef |
Similar Items
-
On join product and local antimagic chromatic number of regular graphs
by: Lau G.-C.; Shiu W.C.
Published: (2023) -
On local antimagic chromatic numbers of circulant graphs join with null graphs or cycles
by: Lau G.C.; Premalatha K.; Shiu W.C.; Nalliah M.
Published: (2023) -
COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2
by: Lau, et al.
Published: (2024) -
On local antimagic chromatic number of lexicographic product graphs
by: Lau G.-C.; Shiu W.C.
Published: (2023) -
On Local Antimagic Chromatic Number of Graphs with Cut-vertices
by: Lau G.-C.; Shiu W.-C.; Ng H.-K.
Published: (2024)