On local distance antimagic chromatic number of graphs disjoint union with 1-regular graphs

Let G be a graph on p vertices and q edges with no isolated vertices. A bijection f: V → {1, 2, 3,.., p} is called local distance antimagic labeling, if for any two adjacent vertices u and v, we have w(u) 6= w(v), where (Formula presented). The local distance antimagic chromatic number χlda(G) is de...

Full description

Bibliographic Details
Published in:Proyecciones
Main Author: Priyadharshini V.; Perrichiappan A.; Nalliah M.; Lau G.-C.
Format: Article
Language:English
Published: Universidad Catolica del Norte 2024
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85201864896&doi=10.22199%2fissn.0717-6279-5963&partnerID=40&md5=0cb31e41c1f07d89f2b6e4b0cfff76ef
id 2-s2.0-85201864896
spelling 2-s2.0-85201864896
Priyadharshini V.; Perrichiappan A.; Nalliah M.; Lau G.-C.
On local distance antimagic chromatic number of graphs disjoint union with 1-regular graphs
2024
Proyecciones
43
2
10.22199/issn.0717-6279-5963
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85201864896&doi=10.22199%2fissn.0717-6279-5963&partnerID=40&md5=0cb31e41c1f07d89f2b6e4b0cfff76ef
Let G be a graph on p vertices and q edges with no isolated vertices. A bijection f: V → {1, 2, 3,.., p} is called local distance antimagic labeling, if for any two adjacent vertices u and v, we have w(u) 6= w(v), where (Formula presented). The local distance antimagic chromatic number χlda(G) is defined to be the minimum number of colors taken over all colorings of G induced by local distance antimagic labelings of G. In this paper, we obtained necessary and sufficient condition for the local distance antimagic chromatic number of the disjoint union of some graphs with 1-regular graphs to equal to the number of distinct neighbors of its pendant vertices. We also gave a correct result in [Local Distance Antimagic Vertex Coloring of Graphs, https://arxiv.org/abs/2106.01833v1]. © (2024), (Universidad Catolica del Norte). All rights reserved.
Universidad Catolica del Norte
7160917
English
Article
All Open Access; Gold Open Access
author Priyadharshini V.; Perrichiappan A.; Nalliah M.; Lau G.-C.
spellingShingle Priyadharshini V.; Perrichiappan A.; Nalliah M.; Lau G.-C.
On local distance antimagic chromatic number of graphs disjoint union with 1-regular graphs
author_facet Priyadharshini V.; Perrichiappan A.; Nalliah M.; Lau G.-C.
author_sort Priyadharshini V.; Perrichiappan A.; Nalliah M.; Lau G.-C.
title On local distance antimagic chromatic number of graphs disjoint union with 1-regular graphs
title_short On local distance antimagic chromatic number of graphs disjoint union with 1-regular graphs
title_full On local distance antimagic chromatic number of graphs disjoint union with 1-regular graphs
title_fullStr On local distance antimagic chromatic number of graphs disjoint union with 1-regular graphs
title_full_unstemmed On local distance antimagic chromatic number of graphs disjoint union with 1-regular graphs
title_sort On local distance antimagic chromatic number of graphs disjoint union with 1-regular graphs
publishDate 2024
container_title Proyecciones
container_volume 43
container_issue 2
doi_str_mv 10.22199/issn.0717-6279-5963
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85201864896&doi=10.22199%2fissn.0717-6279-5963&partnerID=40&md5=0cb31e41c1f07d89f2b6e4b0cfff76ef
description Let G be a graph on p vertices and q edges with no isolated vertices. A bijection f: V → {1, 2, 3,.., p} is called local distance antimagic labeling, if for any two adjacent vertices u and v, we have w(u) 6= w(v), where (Formula presented). The local distance antimagic chromatic number χlda(G) is defined to be the minimum number of colors taken over all colorings of G induced by local distance antimagic labelings of G. In this paper, we obtained necessary and sufficient condition for the local distance antimagic chromatic number of the disjoint union of some graphs with 1-regular graphs to equal to the number of distinct neighbors of its pendant vertices. We also gave a correct result in [Local Distance Antimagic Vertex Coloring of Graphs, https://arxiv.org/abs/2106.01833v1]. © (2024), (Universidad Catolica del Norte). All rights reserved.
publisher Universidad Catolica del Norte
issn 7160917
language English
format Article
accesstype All Open Access; Gold Open Access
record_format scopus
collection Scopus
_version_ 1809678472613724160