Artificial neural network hyperparameters optimization for predicting the thermal conductivity of MXene/graphene nanofluids
Background: The critical role of thermal conductivity (TC) as a significant thermo-physical property in MXene/graphene-based nanofluids for photovoltaic/thermal systems has motivated recent research into developing precision predictive models. The multilayer perceptron neural network (MLPNN) has eme...
Published in: | Journal of the Taiwan Institute of Chemical Engineers |
---|---|
Main Author: | Shang Y.; Hammoodi K.A.; Alizadeh A.; Sharma K.; jasim D.J.; Rajab H.; Ahmed M.; Kassim M.; Maleki H.; Salahshour S.; Salahshour S.; Salahshour S. |
Format: | Article |
Language: | English |
Published: |
Taiwan Institute of Chemical Engineers
2024
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200416163&doi=10.1016%2fj.jtice.2024.105673&partnerID=40&md5=817ca67518d51e0a5b1f9519b0d46ccb |
Similar Items
-
Artificial neural network hyperparameters optimization for predicting the thermal conductivity of MXene/graphene nanofluids
by: Shang, et al.
Published: (2024) -
Enhancing solar energy conversion efficiency: Thermophysical property predicting of MXene/Graphene hybrid nanofluids via bayesian-optimized artificial neural networks
by: jasim D.J.; Rajab H.; Alizadeh A.; Sharma K.; Ahmed M.; Kassim M.; AbdulAmeer S.; Alwan A.A.; Salahshour S.; Maleki H.
Published: (2024) -
Optimizing Gaussian process regression (GPR) hyperparameters with three metaheuristic algorithms for viscosity prediction of suspensions containing microencapsulated PCMs
by: Hai T.; Basem A.; Alizadeh A.; Sharma K.; jasim D.J.; Rajab H.; Ahmed M.; Kassim M.; Singh N.S.S.; Maleki H.
Published: (2024) -
Analyzing geometric parameters in inclined enclosures filled with magnetic nanofluid using artificial neural networks
by: Hai T.; Alsharif S.; Ali M.A.; Singh P.K.; Alizadeh A.
Published: (2023) -
Insights into water-lubricated transport of heavy and extra-heavy oils: Application of CFD, RSM, and metaheuristic optimized machine learning models
by: Alsehli M.; Basem A.; jasim D.J.; Mausam K.; Alshamrani A.; Sultan A.J.; Kassim M.; Rajab H.; Musa V.A.; Maleki H.
Published: (2024)