Artificial neural network hyperparameters optimization for predicting the thermal conductivity of MXene/graphene nanofluids

Background: The critical role of thermal conductivity (TC) as a significant thermo-physical property in MXene/graphene-based nanofluids for photovoltaic/thermal systems has motivated recent research into developing precision predictive models. The multilayer perceptron neural network (MLPNN) has eme...

Full description

Bibliographic Details
Published in:Journal of the Taiwan Institute of Chemical Engineers
Main Author: Shang Y.; Hammoodi K.A.; Alizadeh A.; Sharma K.; jasim D.J.; Rajab H.; Ahmed M.; Kassim M.; Maleki H.; Salahshour S.; Salahshour S.; Salahshour S.
Format: Article
Language:English
Published: Taiwan Institute of Chemical Engineers 2024
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200416163&doi=10.1016%2fj.jtice.2024.105673&partnerID=40&md5=817ca67518d51e0a5b1f9519b0d46ccb
id 2-s2.0-85200416163
spelling 2-s2.0-85200416163
Shang Y.; Hammoodi K.A.; Alizadeh A.; Sharma K.; jasim D.J.; Rajab H.; Ahmed M.; Kassim M.; Maleki H.; Salahshour S.; Salahshour S.; Salahshour S.
Artificial neural network hyperparameters optimization for predicting the thermal conductivity of MXene/graphene nanofluids
2024
Journal of the Taiwan Institute of Chemical Engineers
164

10.1016/j.jtice.2024.105673
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200416163&doi=10.1016%2fj.jtice.2024.105673&partnerID=40&md5=817ca67518d51e0a5b1f9519b0d46ccb
Background: The critical role of thermal conductivity (TC) as a significant thermo-physical property in MXene/graphene-based nanofluids for photovoltaic/thermal systems has motivated recent research into developing precision predictive models. The multilayer perceptron neural network (MLPNN) has emerged as an eminent AI algorithm for this task. Methods: This study employs Bayesian optimization, random search (RS), and grid search (GS) to fine-tune MLPNN hyperparameters—hidden layers, neurons, activation functions, standardization, and regularization—to elevate TC modeling efficiency. The proposed methodology unfolds in sequential phases: data analysis, data pre-processing, and introduction of MLPNN, GS, RS, Bayesian approach, and their integration algorithm. The next phase entails developing predictive models and presenting optimal cases. Lastly, the final models undergo statistical evaluation and graphical comparison for a thorough analysis. Findings: Results manifest that the GS-MLPNN model excels, achieving the lowest testing data error (MAPE = 0.5261%) and high conformity with empirical data (R = 0.99941). Meanwhile, the RS method adjusts hyperparameters with negligible precision loss (MAPE = 0.6046%, R = 0.99887). Contrarily, Bayesian optimization lags, increasing errors (MAPE = 3.1981%) and lower correlation (R = 0.98099), suggesting its relative inefficacy for this specific application. The optimized models provide efficient predictions, significantly reducing the financial/computing costs associated with experimental/numerical analysis. © 2024 Taiwan Institute of Chemical Engineers
Taiwan Institute of Chemical Engineers
18761070
English
Article

author Shang Y.; Hammoodi K.A.; Alizadeh A.; Sharma K.; jasim D.J.; Rajab H.; Ahmed M.; Kassim M.; Maleki H.; Salahshour S.; Salahshour S.; Salahshour S.
spellingShingle Shang Y.; Hammoodi K.A.; Alizadeh A.; Sharma K.; jasim D.J.; Rajab H.; Ahmed M.; Kassim M.; Maleki H.; Salahshour S.; Salahshour S.; Salahshour S.
Artificial neural network hyperparameters optimization for predicting the thermal conductivity of MXene/graphene nanofluids
author_facet Shang Y.; Hammoodi K.A.; Alizadeh A.; Sharma K.; jasim D.J.; Rajab H.; Ahmed M.; Kassim M.; Maleki H.; Salahshour S.; Salahshour S.; Salahshour S.
author_sort Shang Y.; Hammoodi K.A.; Alizadeh A.; Sharma K.; jasim D.J.; Rajab H.; Ahmed M.; Kassim M.; Maleki H.; Salahshour S.; Salahshour S.; Salahshour S.
title Artificial neural network hyperparameters optimization for predicting the thermal conductivity of MXene/graphene nanofluids
title_short Artificial neural network hyperparameters optimization for predicting the thermal conductivity of MXene/graphene nanofluids
title_full Artificial neural network hyperparameters optimization for predicting the thermal conductivity of MXene/graphene nanofluids
title_fullStr Artificial neural network hyperparameters optimization for predicting the thermal conductivity of MXene/graphene nanofluids
title_full_unstemmed Artificial neural network hyperparameters optimization for predicting the thermal conductivity of MXene/graphene nanofluids
title_sort Artificial neural network hyperparameters optimization for predicting the thermal conductivity of MXene/graphene nanofluids
publishDate 2024
container_title Journal of the Taiwan Institute of Chemical Engineers
container_volume 164
container_issue
doi_str_mv 10.1016/j.jtice.2024.105673
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200416163&doi=10.1016%2fj.jtice.2024.105673&partnerID=40&md5=817ca67518d51e0a5b1f9519b0d46ccb
description Background: The critical role of thermal conductivity (TC) as a significant thermo-physical property in MXene/graphene-based nanofluids for photovoltaic/thermal systems has motivated recent research into developing precision predictive models. The multilayer perceptron neural network (MLPNN) has emerged as an eminent AI algorithm for this task. Methods: This study employs Bayesian optimization, random search (RS), and grid search (GS) to fine-tune MLPNN hyperparameters—hidden layers, neurons, activation functions, standardization, and regularization—to elevate TC modeling efficiency. The proposed methodology unfolds in sequential phases: data analysis, data pre-processing, and introduction of MLPNN, GS, RS, Bayesian approach, and their integration algorithm. The next phase entails developing predictive models and presenting optimal cases. Lastly, the final models undergo statistical evaluation and graphical comparison for a thorough analysis. Findings: Results manifest that the GS-MLPNN model excels, achieving the lowest testing data error (MAPE = 0.5261%) and high conformity with empirical data (R = 0.99941). Meanwhile, the RS method adjusts hyperparameters with negligible precision loss (MAPE = 0.6046%, R = 0.99887). Contrarily, Bayesian optimization lags, increasing errors (MAPE = 3.1981%) and lower correlation (R = 0.98099), suggesting its relative inefficacy for this specific application. The optimized models provide efficient predictions, significantly reducing the financial/computing costs associated with experimental/numerical analysis. © 2024 Taiwan Institute of Chemical Engineers
publisher Taiwan Institute of Chemical Engineers
issn 18761070
language English
format Article
accesstype
record_format scopus
collection Scopus
_version_ 1820775432524398592