Full Edge-Friendly Index Sets of One Point Union of Cycles
Let G = (V, E) be a graph with vertex set V and edge set E. An edge labeling f : E → Z2 induces a vertex labeling f+ : V → Z2 defined by f+(v) ≡ P f(uv) (mod 2), for each vertex uv∈E v ∈ V. For i ∈ Z2, let vf(i) = |{v ∈ V: f+(v) = i}| and ef(i) = |{e ∈ E : f(e) = i}|. An edge labeling f of a graph G...
Published in: | Ars Combinatoria |
---|---|
Main Author: | Gao Z.-B.; Shiu W.C.; Lee S.-M.; Lau G.-C. |
Format: | Article |
Language: | English |
Published: |
Charles Babbage Research Centre
2024
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200372701&doi=10.61091%2fars159-03&partnerID=40&md5=c6db0b1dab801cd38f04bc9d9a9ca20e |
Similar Items
-
On friendly index sets of the edge-gluing of complete graph and cycles
by: Lau G.-C.; Gao Z.-B.; Lee S.-M.; Sun G.-Y.
Published: (2016) -
On friendly index sets and product-cordial index sets of gear graphs
by: Lau G.-C.; Lee S.-M.; Ng H.-K.
Published: (2014) -
Analytic odd mean labeling of union and identification of some graphs
by: Jeyanthi P.; Gomathi R.; Lau G.C.; Shiu W.C.
Published: (2023) -
Local distance antimagic cromatic number of join product of graphs with cycles or paths
by: Shiu W.C.; Lau G.-C.; Nalliah M.
Published: (2024) -
On local antimagic chromatic number of cycle-related join graphs II
by: Lau G.-C.; Premalatha K.; Arumugam S.; Shiu W.C.
Published: (2024)