Full Edge-Friendly Index Sets of One Point Union of Cycles

Let G = (V, E) be a graph with vertex set V and edge set E. An edge labeling f : E → Z2 induces a vertex labeling f+ : V → Z2 defined by f+(v) ≡ P f(uv) (mod 2), for each vertex uv∈E v ∈ V. For i ∈ Z2, let vf(i) = |{v ∈ V: f+(v) = i}| and ef(i) = |{e ∈ E : f(e) = i}|. An edge labeling f of a graph G...

Full description

Bibliographic Details
Published in:Ars Combinatoria
Main Author: Gao Z.-B.; Shiu W.C.; Lee S.-M.; Lau G.-C.
Format: Article
Language:English
Published: Charles Babbage Research Centre 2024
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200372701&doi=10.61091%2fars159-03&partnerID=40&md5=c6db0b1dab801cd38f04bc9d9a9ca20e
id 2-s2.0-85200372701
spelling 2-s2.0-85200372701
Gao Z.-B.; Shiu W.C.; Lee S.-M.; Lau G.-C.
Full Edge-Friendly Index Sets of One Point Union of Cycles
2024
Ars Combinatoria
159

10.61091/ars159-03
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200372701&doi=10.61091%2fars159-03&partnerID=40&md5=c6db0b1dab801cd38f04bc9d9a9ca20e
Let G = (V, E) be a graph with vertex set V and edge set E. An edge labeling f : E → Z2 induces a vertex labeling f+ : V → Z2 defined by f+(v) ≡ P f(uv) (mod 2), for each vertex uv∈E v ∈ V. For i ∈ Z2, let vf(i) = |{v ∈ V: f+(v) = i}| and ef(i) = |{e ∈ E : f(e) = i}|. An edge labeling f of a graph G is said to be edge-friendly if |ef(1) − ef(0)| ≤ 1. The set {vf(1) − vf(0): f is an edge-friendly labeling of G} is called the full edge-friendly index set of G. In this paper, we shall determine the full edge-friendly index sets of one point union of cycles. © 2024 the Author(s)
Charles Babbage Research Centre
3817032
English
Article

author Gao Z.-B.; Shiu W.C.; Lee S.-M.; Lau G.-C.
spellingShingle Gao Z.-B.; Shiu W.C.; Lee S.-M.; Lau G.-C.
Full Edge-Friendly Index Sets of One Point Union of Cycles
author_facet Gao Z.-B.; Shiu W.C.; Lee S.-M.; Lau G.-C.
author_sort Gao Z.-B.; Shiu W.C.; Lee S.-M.; Lau G.-C.
title Full Edge-Friendly Index Sets of One Point Union of Cycles
title_short Full Edge-Friendly Index Sets of One Point Union of Cycles
title_full Full Edge-Friendly Index Sets of One Point Union of Cycles
title_fullStr Full Edge-Friendly Index Sets of One Point Union of Cycles
title_full_unstemmed Full Edge-Friendly Index Sets of One Point Union of Cycles
title_sort Full Edge-Friendly Index Sets of One Point Union of Cycles
publishDate 2024
container_title Ars Combinatoria
container_volume 159
container_issue
doi_str_mv 10.61091/ars159-03
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200372701&doi=10.61091%2fars159-03&partnerID=40&md5=c6db0b1dab801cd38f04bc9d9a9ca20e
description Let G = (V, E) be a graph with vertex set V and edge set E. An edge labeling f : E → Z2 induces a vertex labeling f+ : V → Z2 defined by f+(v) ≡ P f(uv) (mod 2), for each vertex uv∈E v ∈ V. For i ∈ Z2, let vf(i) = |{v ∈ V: f+(v) = i}| and ef(i) = |{e ∈ E : f(e) = i}|. An edge labeling f of a graph G is said to be edge-friendly if |ef(1) − ef(0)| ≤ 1. The set {vf(1) − vf(0): f is an edge-friendly labeling of G} is called the full edge-friendly index set of G. In this paper, we shall determine the full edge-friendly index sets of one point union of cycles. © 2024 the Author(s)
publisher Charles Babbage Research Centre
issn 3817032
language English
format Article
accesstype
record_format scopus
collection Scopus
_version_ 1809678474334437376