Summary: | The study examined the properties of reactive black 5 (RB5) and reactive orange 16 (RO16) and how their molecular structures affected colour and COD removal in simulated batik wastewater. It also evaluated the impact of Al rod-type electrodes on energy and electrode consumption during electrocoagulation (EC). Parameters including current densities (10–30 mA/cm2), initial pH (3−11), reaction time (10–40 min), and NaCl dosage (0.5–2.0 g/L) were evaluated for maximum colour and COD removal. The study found that the highest colour removal rates for RB5, RO16, and their mixtures were 98.60 %, 58.40 %, and 70.69 %, respectively, while COD removal rates were 95.06 %, 91.83 %, and 96.69 %. FTIR analysis characterised the dyes, and a cost analysis showed energy and electrode consumption at 5.26 kWh/m3 and 0.234 kg/m3, resulting in an operating cost of RM 1.6/kWh. The best conditions for maximal removal were determined to be pH 3, an IED of 1 cm, 1.5 g/L NaCl, 120 rpm, 30 mA/cm2, and a reaction time of 40 min, as validated by regression analysis. The EC process applied to actual batik wastewater proved effective, achieving 96.69 % colour removal and 97.93 % COD removal. The challenges and potential avenues for future research within the EC process were also addressed. © 2024 The Authors
|