Lightweight White Blood Cells Detection Using Fusion of YOLOv5 and Attention Model
The human body is protected by an immune system which mainly consists of white blood cells (WBCs). There are five types of white blood cells, and each type will fight certain viruses and bacteria that are encountered in the human body. This defence system helps to maintain human health. Consequently...
Published in: | Journal of Advanced Research in Applied Sciences and Engineering Technology |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Semarak Ilmu Publishing
2025
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199751285&doi=10.37934%2faraset.48.1.117136&partnerID=40&md5=3ce891b01210dd331754a2065877cade |
id |
2-s2.0-85199751285 |
---|---|
spelling |
2-s2.0-85199751285 Rohaziat N.; Tomari M.R.M.; Zakaria W.N.W.; Das D. Lightweight White Blood Cells Detection Using Fusion of YOLOv5 and Attention Model 2025 Journal of Advanced Research in Applied Sciences and Engineering Technology 48 1 10.37934/araset.48.1.117136 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199751285&doi=10.37934%2faraset.48.1.117136&partnerID=40&md5=3ce891b01210dd331754a2065877cade The human body is protected by an immune system which mainly consists of white blood cells (WBCs). There are five types of white blood cells, and each type will fight certain viruses and bacteria that are encountered in the human body. This defence system helps to maintain human health. Consequently, healthy WBCs keep humans healthy. Abnormality in WBCs can cause harmful viruses or bacterial infections. Leukaemia is a common WBCs disease which affects the production of good cells. Early detection is important for advanced treatment for cancer patient. One of the detection methods is by visual detection of the blood microscopic image since the five types of the WBCs are visually distinctive. In current practice, the pathologist will perform the diagnosis manually which may take time if there are many samples to examine. This procedure can be improved by automating it using a computer aided detection system. This paper studied the deep learning detection model of YOLOv5s and the effect of fusing the Squeeze-Excitation (SE) and Convolutional Block Attention Model (CBAM) into the YOLOv5s. It was performed on the four types of the WBCs, eosinophil, lymphocyte, monocyte, and the neutrophil taken from a public dataset. Based on the findings, the proposed method of YOLOv5s-SE, YOLOv5s-CBAM, and YOLOv5s-SE-CBAM produced overall accuracy of 99.5%, 99.5% and 99.4% mAP value and the performance are at par with the deeper model YOLOv5m with 65.8% of a smaller number of hyperparameters. © 2025, Semarak Ilmu Publishing. All rights reserved. Semarak Ilmu Publishing 24621943 English Article |
author |
Rohaziat N.; Tomari M.R.M.; Zakaria W.N.W.; Das D. |
spellingShingle |
Rohaziat N.; Tomari M.R.M.; Zakaria W.N.W.; Das D. Lightweight White Blood Cells Detection Using Fusion of YOLOv5 and Attention Model |
author_facet |
Rohaziat N.; Tomari M.R.M.; Zakaria W.N.W.; Das D. |
author_sort |
Rohaziat N.; Tomari M.R.M.; Zakaria W.N.W.; Das D. |
title |
Lightweight White Blood Cells Detection Using Fusion of YOLOv5 and Attention Model |
title_short |
Lightweight White Blood Cells Detection Using Fusion of YOLOv5 and Attention Model |
title_full |
Lightweight White Blood Cells Detection Using Fusion of YOLOv5 and Attention Model |
title_fullStr |
Lightweight White Blood Cells Detection Using Fusion of YOLOv5 and Attention Model |
title_full_unstemmed |
Lightweight White Blood Cells Detection Using Fusion of YOLOv5 and Attention Model |
title_sort |
Lightweight White Blood Cells Detection Using Fusion of YOLOv5 and Attention Model |
publishDate |
2025 |
container_title |
Journal of Advanced Research in Applied Sciences and Engineering Technology |
container_volume |
48 |
container_issue |
1 |
doi_str_mv |
10.37934/araset.48.1.117136 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199751285&doi=10.37934%2faraset.48.1.117136&partnerID=40&md5=3ce891b01210dd331754a2065877cade |
description |
The human body is protected by an immune system which mainly consists of white blood cells (WBCs). There are five types of white blood cells, and each type will fight certain viruses and bacteria that are encountered in the human body. This defence system helps to maintain human health. Consequently, healthy WBCs keep humans healthy. Abnormality in WBCs can cause harmful viruses or bacterial infections. Leukaemia is a common WBCs disease which affects the production of good cells. Early detection is important for advanced treatment for cancer patient. One of the detection methods is by visual detection of the blood microscopic image since the five types of the WBCs are visually distinctive. In current practice, the pathologist will perform the diagnosis manually which may take time if there are many samples to examine. This procedure can be improved by automating it using a computer aided detection system. This paper studied the deep learning detection model of YOLOv5s and the effect of fusing the Squeeze-Excitation (SE) and Convolutional Block Attention Model (CBAM) into the YOLOv5s. It was performed on the four types of the WBCs, eosinophil, lymphocyte, monocyte, and the neutrophil taken from a public dataset. Based on the findings, the proposed method of YOLOv5s-SE, YOLOv5s-CBAM, and YOLOv5s-SE-CBAM produced overall accuracy of 99.5%, 99.5% and 99.4% mAP value and the performance are at par with the deeper model YOLOv5m with 65.8% of a smaller number of hyperparameters. © 2025, Semarak Ilmu Publishing. All rights reserved. |
publisher |
Semarak Ilmu Publishing |
issn |
24621943 |
language |
English |
format |
Article |
accesstype |
|
record_format |
scopus |
collection |
Scopus |
_version_ |
1809678469337972736 |