AN UNSUPERVISED LEARNING-BASED ANALYSIS OF THE TAKE-OFF BEHAVIOR OF THE A320 AND B738 AT SULTAN HASANUDDIN INTERNATIONAL AIRPORT; [NENADZIRANA PRAKTIČNA ANALIZA PONAŠANJA AVIONA A320 I B738 PROVEDENA U MEĐUNARODNOJ ZRAČNOJ LUCI SULTAN HASANUDDIN]

The purpose of this research was to look at the behavior of two well-known commercial aircraft types in Indonesia (the A320 and the B738) during the take-off phase. This was done to provide new information in the field of aviation, particularly flight safety. Observations were made at Sultan Hasanud...

Full description

Bibliographic Details
Published in:Sigurnost
Main Author: Kurniati R.; Passarella R.; Afriansyah I.G.; Arsalan O.; Aditya A.; Fathan M.R.; Yousnaidi R.S.; Veny H.
Format: Article
Language:English
Published: Croatian Association of Technical Examiners 2024
Online Access:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199038506&doi=10.31306%2fs.66.2.3&partnerID=40&md5=02bbec618d3bb09f9327e496843f0f36
id 2-s2.0-85199038506
spelling 2-s2.0-85199038506
Kurniati R.; Passarella R.; Afriansyah I.G.; Arsalan O.; Aditya A.; Fathan M.R.; Yousnaidi R.S.; Veny H.
AN UNSUPERVISED LEARNING-BASED ANALYSIS OF THE TAKE-OFF BEHAVIOR OF THE A320 AND B738 AT SULTAN HASANUDDIN INTERNATIONAL AIRPORT; [NENADZIRANA PRAKTIČNA ANALIZA PONAŠANJA AVIONA A320 I B738 PROVEDENA U MEĐUNARODNOJ ZRAČNOJ LUCI SULTAN HASANUDDIN]
2024
Sigurnost
66
2
10.31306/s.66.2.3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199038506&doi=10.31306%2fs.66.2.3&partnerID=40&md5=02bbec618d3bb09f9327e496843f0f36
The purpose of this research was to look at the behavior of two well-known commercial aircraft types in Indonesia (the A320 and the B738) during the take-off phase. This was done to provide new information in the field of aviation, particularly flight safety. Observations were made at Sultan Hasanuddin International Airport by observing aircraft ADS-B data, which defines the behavior of the flight pattern. This ADS-B data is the subject of data analysis, which will subsequently be taught to the machine (computer) so that it can recognize the pattern and construct clusters. The purpose of this study is to utilize unsupervised learning, specifically K-Means clustering, to categorize and identify patterns in unlabeled ADS-B data obtained from AERO-TRACK. To prepare the raw data and create a dataset, data analysis techniques were employed. The machine learning model generates three distinct clusters: cluster 1 represents aircraft take-off on two-thirds of the runway, cluster 2 represents aircraft take-off on the entire runway, and cluster 3 represents aircraft take-off on one-third of the runway. The elbow method is utilized to analyze and interpret the three clusters produced by the model. An interesting observation is that the B738 aircraft dominate in all three clusters, while the A320 aircraft dominate in clusters 1 and 3. Notably, in cluster 2, there is a significant number of commercial planes taking off, accounting for 145 out of 628 flights. Based on the observed data spanning 91 days (September 26 to December 26, 2022), there is a 23% probability of runway excursion (overshooting the runway) in this cluster. Additionally, the research reveals that A320 aircraft demonstrate a safe zone take-off rate of 87%, whereas the B738 aircraft demonstrate a rate of 70.5%. These findings, derived from the analysis of ADS-B data such as GPS-Altitude and Coordinate, are intended to serve as valuable knowledge for aviation authorities, aviation users, and other stakeholders in the aviation industry. © 2024, Croatian Association of Technical Examiners. All rights reserved.
Croatian Association of Technical Examiners
3506886
English
Article
All Open Access; Gold Open Access
author Kurniati R.; Passarella R.; Afriansyah I.G.; Arsalan O.; Aditya A.; Fathan M.R.; Yousnaidi R.S.; Veny H.
spellingShingle Kurniati R.; Passarella R.; Afriansyah I.G.; Arsalan O.; Aditya A.; Fathan M.R.; Yousnaidi R.S.; Veny H.
AN UNSUPERVISED LEARNING-BASED ANALYSIS OF THE TAKE-OFF BEHAVIOR OF THE A320 AND B738 AT SULTAN HASANUDDIN INTERNATIONAL AIRPORT; [NENADZIRANA PRAKTIČNA ANALIZA PONAŠANJA AVIONA A320 I B738 PROVEDENA U MEĐUNARODNOJ ZRAČNOJ LUCI SULTAN HASANUDDIN]
author_facet Kurniati R.; Passarella R.; Afriansyah I.G.; Arsalan O.; Aditya A.; Fathan M.R.; Yousnaidi R.S.; Veny H.
author_sort Kurniati R.; Passarella R.; Afriansyah I.G.; Arsalan O.; Aditya A.; Fathan M.R.; Yousnaidi R.S.; Veny H.
title AN UNSUPERVISED LEARNING-BASED ANALYSIS OF THE TAKE-OFF BEHAVIOR OF THE A320 AND B738 AT SULTAN HASANUDDIN INTERNATIONAL AIRPORT; [NENADZIRANA PRAKTIČNA ANALIZA PONAŠANJA AVIONA A320 I B738 PROVEDENA U MEĐUNARODNOJ ZRAČNOJ LUCI SULTAN HASANUDDIN]
title_short AN UNSUPERVISED LEARNING-BASED ANALYSIS OF THE TAKE-OFF BEHAVIOR OF THE A320 AND B738 AT SULTAN HASANUDDIN INTERNATIONAL AIRPORT; [NENADZIRANA PRAKTIČNA ANALIZA PONAŠANJA AVIONA A320 I B738 PROVEDENA U MEĐUNARODNOJ ZRAČNOJ LUCI SULTAN HASANUDDIN]
title_full AN UNSUPERVISED LEARNING-BASED ANALYSIS OF THE TAKE-OFF BEHAVIOR OF THE A320 AND B738 AT SULTAN HASANUDDIN INTERNATIONAL AIRPORT; [NENADZIRANA PRAKTIČNA ANALIZA PONAŠANJA AVIONA A320 I B738 PROVEDENA U MEĐUNARODNOJ ZRAČNOJ LUCI SULTAN HASANUDDIN]
title_fullStr AN UNSUPERVISED LEARNING-BASED ANALYSIS OF THE TAKE-OFF BEHAVIOR OF THE A320 AND B738 AT SULTAN HASANUDDIN INTERNATIONAL AIRPORT; [NENADZIRANA PRAKTIČNA ANALIZA PONAŠANJA AVIONA A320 I B738 PROVEDENA U MEĐUNARODNOJ ZRAČNOJ LUCI SULTAN HASANUDDIN]
title_full_unstemmed AN UNSUPERVISED LEARNING-BASED ANALYSIS OF THE TAKE-OFF BEHAVIOR OF THE A320 AND B738 AT SULTAN HASANUDDIN INTERNATIONAL AIRPORT; [NENADZIRANA PRAKTIČNA ANALIZA PONAŠANJA AVIONA A320 I B738 PROVEDENA U MEĐUNARODNOJ ZRAČNOJ LUCI SULTAN HASANUDDIN]
title_sort AN UNSUPERVISED LEARNING-BASED ANALYSIS OF THE TAKE-OFF BEHAVIOR OF THE A320 AND B738 AT SULTAN HASANUDDIN INTERNATIONAL AIRPORT; [NENADZIRANA PRAKTIČNA ANALIZA PONAŠANJA AVIONA A320 I B738 PROVEDENA U MEĐUNARODNOJ ZRAČNOJ LUCI SULTAN HASANUDDIN]
publishDate 2024
container_title Sigurnost
container_volume 66
container_issue 2
doi_str_mv 10.31306/s.66.2.3
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199038506&doi=10.31306%2fs.66.2.3&partnerID=40&md5=02bbec618d3bb09f9327e496843f0f36
description The purpose of this research was to look at the behavior of two well-known commercial aircraft types in Indonesia (the A320 and the B738) during the take-off phase. This was done to provide new information in the field of aviation, particularly flight safety. Observations were made at Sultan Hasanuddin International Airport by observing aircraft ADS-B data, which defines the behavior of the flight pattern. This ADS-B data is the subject of data analysis, which will subsequently be taught to the machine (computer) so that it can recognize the pattern and construct clusters. The purpose of this study is to utilize unsupervised learning, specifically K-Means clustering, to categorize and identify patterns in unlabeled ADS-B data obtained from AERO-TRACK. To prepare the raw data and create a dataset, data analysis techniques were employed. The machine learning model generates three distinct clusters: cluster 1 represents aircraft take-off on two-thirds of the runway, cluster 2 represents aircraft take-off on the entire runway, and cluster 3 represents aircraft take-off on one-third of the runway. The elbow method is utilized to analyze and interpret the three clusters produced by the model. An interesting observation is that the B738 aircraft dominate in all three clusters, while the A320 aircraft dominate in clusters 1 and 3. Notably, in cluster 2, there is a significant number of commercial planes taking off, accounting for 145 out of 628 flights. Based on the observed data spanning 91 days (September 26 to December 26, 2022), there is a 23% probability of runway excursion (overshooting the runway) in this cluster. Additionally, the research reveals that A320 aircraft demonstrate a safe zone take-off rate of 87%, whereas the B738 aircraft demonstrate a rate of 70.5%. These findings, derived from the analysis of ADS-B data such as GPS-Altitude and Coordinate, are intended to serve as valuable knowledge for aviation authorities, aviation users, and other stakeholders in the aviation industry. © 2024, Croatian Association of Technical Examiners. All rights reserved.
publisher Croatian Association of Technical Examiners
issn 3506886
language English
format Article
accesstype All Open Access; Gold Open Access
record_format scopus
collection Scopus
_version_ 1809678474117382144