Enhanced binding interaction and antibacterial inhibition for nanometal oxide particles activated with Aloe Vulgarize through one-pot ultrasonication techniques
The interaction of green zinc oxide nanoparticles (ZnO NPs) with bacterial strains are still scarcely reported. This work was conducted to study the green-one-pot-synthesized ZnO NPs from the Aloe Vulgarize (AV) leaf peel extract assisted with different sonication techniques followed by the physicoc...
Published in: | Bioorganic Chemistry |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Academic Press Inc.
2024
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85196357482&doi=10.1016%2fj.bioorg.2024.107513&partnerID=40&md5=0beef0654866368a684b6651835ac35b |
id |
2-s2.0-85196357482 |
---|---|
spelling |
2-s2.0-85196357482 Dzulkharnien N.S.F.; Rohani R.; Tan Kofli N.; Mohd Kasim N.A.; Abd. Muid S.; Patrick M.; Mohd Fauzi N.A.; Alias H.; Ahmad Radzuan H. Enhanced binding interaction and antibacterial inhibition for nanometal oxide particles activated with Aloe Vulgarize through one-pot ultrasonication techniques 2024 Bioorganic Chemistry 150 10.1016/j.bioorg.2024.107513 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85196357482&doi=10.1016%2fj.bioorg.2024.107513&partnerID=40&md5=0beef0654866368a684b6651835ac35b The interaction of green zinc oxide nanoparticles (ZnO NPs) with bacterial strains are still scarcely reported. This work was conducted to study the green-one-pot-synthesized ZnO NPs from the Aloe Vulgarize (AV) leaf peel extract assisted with different sonication techniques followed by the physicochemical, biological activities and molecular docking studies. The NPs structure was analyzed using FTIR, UV–vis and EDX. The morphology, particle size and crystallinity of ZnO NPs were identified using FESEM and XRD. It was found that the formed flower-like structure with sharp edge and fine size of particulates in ZnO NPs/AV could enhance the bacterial inhibition. The minimum inhibitory concentration (MIC) for all the tested bacterial strains is at 3.125 µg/ml and the bacterial growth curve are dependent on the ZnO NPs dosage. The results of disc diffusion revealed that the ZnO NPs/AV possess better antibacterial effect with bigger ZOI due to the presence of AV active ingredient. The molecular docking between active ingredients of AV in the NPs with the protein of IFCM and 1MWU revealed that low binding energy (Ebind = -6.56 kcal/mol and −8.99 kcal/mol, respectively) attributes to the excessive hydrogen bond from AV that highly influenced their interaction with the amino acid of the selected proteins. Finally, the cytotoxicity test on the biosynthesized ZnO NPs with concentration below 20 µg/ml are found nontoxic on the HDF cell. Overall, ZnO NPs/20 % AV (probe sonication) is considered as the best synthesis option due to its efficient one-pot method, short sonication time but own the best antibacterial effect. © 2024 Elsevier Inc. Academic Press Inc. 00452068 English Article |
author |
Dzulkharnien N.S.F.; Rohani R.; Tan Kofli N.; Mohd Kasim N.A.; Abd. Muid S.; Patrick M.; Mohd Fauzi N.A.; Alias H.; Ahmad Radzuan H. |
spellingShingle |
Dzulkharnien N.S.F.; Rohani R.; Tan Kofli N.; Mohd Kasim N.A.; Abd. Muid S.; Patrick M.; Mohd Fauzi N.A.; Alias H.; Ahmad Radzuan H. Enhanced binding interaction and antibacterial inhibition for nanometal oxide particles activated with Aloe Vulgarize through one-pot ultrasonication techniques |
author_facet |
Dzulkharnien N.S.F.; Rohani R.; Tan Kofli N.; Mohd Kasim N.A.; Abd. Muid S.; Patrick M.; Mohd Fauzi N.A.; Alias H.; Ahmad Radzuan H. |
author_sort |
Dzulkharnien N.S.F.; Rohani R.; Tan Kofli N.; Mohd Kasim N.A.; Abd. Muid S.; Patrick M.; Mohd Fauzi N.A.; Alias H.; Ahmad Radzuan H. |
title |
Enhanced binding interaction and antibacterial inhibition for nanometal oxide particles activated with Aloe Vulgarize through one-pot ultrasonication techniques |
title_short |
Enhanced binding interaction and antibacterial inhibition for nanometal oxide particles activated with Aloe Vulgarize through one-pot ultrasonication techniques |
title_full |
Enhanced binding interaction and antibacterial inhibition for nanometal oxide particles activated with Aloe Vulgarize through one-pot ultrasonication techniques |
title_fullStr |
Enhanced binding interaction and antibacterial inhibition for nanometal oxide particles activated with Aloe Vulgarize through one-pot ultrasonication techniques |
title_full_unstemmed |
Enhanced binding interaction and antibacterial inhibition for nanometal oxide particles activated with Aloe Vulgarize through one-pot ultrasonication techniques |
title_sort |
Enhanced binding interaction and antibacterial inhibition for nanometal oxide particles activated with Aloe Vulgarize through one-pot ultrasonication techniques |
publishDate |
2024 |
container_title |
Bioorganic Chemistry |
container_volume |
150 |
container_issue |
|
doi_str_mv |
10.1016/j.bioorg.2024.107513 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85196357482&doi=10.1016%2fj.bioorg.2024.107513&partnerID=40&md5=0beef0654866368a684b6651835ac35b |
description |
The interaction of green zinc oxide nanoparticles (ZnO NPs) with bacterial strains are still scarcely reported. This work was conducted to study the green-one-pot-synthesized ZnO NPs from the Aloe Vulgarize (AV) leaf peel extract assisted with different sonication techniques followed by the physicochemical, biological activities and molecular docking studies. The NPs structure was analyzed using FTIR, UV–vis and EDX. The morphology, particle size and crystallinity of ZnO NPs were identified using FESEM and XRD. It was found that the formed flower-like structure with sharp edge and fine size of particulates in ZnO NPs/AV could enhance the bacterial inhibition. The minimum inhibitory concentration (MIC) for all the tested bacterial strains is at 3.125 µg/ml and the bacterial growth curve are dependent on the ZnO NPs dosage. The results of disc diffusion revealed that the ZnO NPs/AV possess better antibacterial effect with bigger ZOI due to the presence of AV active ingredient. The molecular docking between active ingredients of AV in the NPs with the protein of IFCM and 1MWU revealed that low binding energy (Ebind = -6.56 kcal/mol and −8.99 kcal/mol, respectively) attributes to the excessive hydrogen bond from AV that highly influenced their interaction with the amino acid of the selected proteins. Finally, the cytotoxicity test on the biosynthesized ZnO NPs with concentration below 20 µg/ml are found nontoxic on the HDF cell. Overall, ZnO NPs/20 % AV (probe sonication) is considered as the best synthesis option due to its efficient one-pot method, short sonication time but own the best antibacterial effect. © 2024 Elsevier Inc. |
publisher |
Academic Press Inc. |
issn |
00452068 |
language |
English |
format |
Article |
accesstype |
|
record_format |
scopus |
collection |
Scopus |
_version_ |
1820775433651617792 |