Long-Term Solar Power Generation Forecasting in the Eastern Coast Region of Malaysia using Artificial Neural Network (ANN) Method
Accurate prediction of power demand and generation is crucial for modern energy systems to efficiently allocate resources and facilitate energy trading. The integration of artificial intelligence (AI) and machine learning techniques has significantly improved the precision of power forecasting. This...
Published in: | Journal of Advanced Research in Fluid Mechanics and Thermal Sciences |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Semarak Ilmu Publishing
2024
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85196313804&doi=10.37934%2farfmts.117.2.6070&partnerID=40&md5=7c7aa1823fb995e715d9b331d079a044 |
id |
2-s2.0-85196313804 |
---|---|
spelling |
2-s2.0-85196313804 Iskandar M.A.; Abd Aziz M.A.S.; Sivaraju S.S.; Borhan N.; Mohtar W.A.A.-Q.I.W.; Ahmad N. Long-Term Solar Power Generation Forecasting in the Eastern Coast Region of Malaysia using Artificial Neural Network (ANN) Method 2024 Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 117 2 10.37934/arfmts.117.2.6070 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85196313804&doi=10.37934%2farfmts.117.2.6070&partnerID=40&md5=7c7aa1823fb995e715d9b331d079a044 Accurate prediction of power demand and generation is crucial for modern energy systems to efficiently allocate resources and facilitate energy trading. The integration of artificial intelligence (AI) and machine learning techniques has significantly improved the precision of power forecasting. This study focuses on the application of Artificial Neural Networks (ANN) for forecasting power generation in the Eastern Coast region of Malaysia, with a specific emphasis on solar power. The research methodology involves collecting and analyzing historical power data, weather data, and relevant variables. ANN models are trained, validated, and tested on a selected power grid to assess their accuracy and predictive capabilities. The expected outcomes aim to include the development of a precise power generation forecasting model, providing valuable insights for decision-makers to optimize energy operations and seamlessly integrate renewable sources. Additionally, the study explores potential challenges, limitations, and best practices associated with ANN-based power forecasting. The dataset covers the period from 2020 to 2023, with variables such as average output power, ambient temperature, PV module temperature, global horizontal irradiance, and wind speed recorded at 30-minute intervals. The architecture of the ANN model, implemented using the Keras framework, is described as a Sequential model with layers utilizing the 'ReLU' activation function. Model evaluation employs metrics like root mean square error (RMSE), mean square error (MSE), and mean absolute error (MAE) on the test set, offering insights into the model's overall fit, average deviation, and sensitivity to outliers. Results reveal strong correlations between PV module temperature, irradiance, and AC power generated. © 2024, Semarak Ilmu Publishing. All rights reserved. Semarak Ilmu Publishing 22897879 English Article All Open Access; Hybrid Gold Open Access |
author |
Iskandar M.A.; Abd Aziz M.A.S.; Sivaraju S.S.; Borhan N.; Mohtar W.A.A.-Q.I.W.; Ahmad N. |
spellingShingle |
Iskandar M.A.; Abd Aziz M.A.S.; Sivaraju S.S.; Borhan N.; Mohtar W.A.A.-Q.I.W.; Ahmad N. Long-Term Solar Power Generation Forecasting in the Eastern Coast Region of Malaysia using Artificial Neural Network (ANN) Method |
author_facet |
Iskandar M.A.; Abd Aziz M.A.S.; Sivaraju S.S.; Borhan N.; Mohtar W.A.A.-Q.I.W.; Ahmad N. |
author_sort |
Iskandar M.A.; Abd Aziz M.A.S.; Sivaraju S.S.; Borhan N.; Mohtar W.A.A.-Q.I.W.; Ahmad N. |
title |
Long-Term Solar Power Generation Forecasting in the Eastern Coast Region of Malaysia using Artificial Neural Network (ANN) Method |
title_short |
Long-Term Solar Power Generation Forecasting in the Eastern Coast Region of Malaysia using Artificial Neural Network (ANN) Method |
title_full |
Long-Term Solar Power Generation Forecasting in the Eastern Coast Region of Malaysia using Artificial Neural Network (ANN) Method |
title_fullStr |
Long-Term Solar Power Generation Forecasting in the Eastern Coast Region of Malaysia using Artificial Neural Network (ANN) Method |
title_full_unstemmed |
Long-Term Solar Power Generation Forecasting in the Eastern Coast Region of Malaysia using Artificial Neural Network (ANN) Method |
title_sort |
Long-Term Solar Power Generation Forecasting in the Eastern Coast Region of Malaysia using Artificial Neural Network (ANN) Method |
publishDate |
2024 |
container_title |
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences |
container_volume |
117 |
container_issue |
2 |
doi_str_mv |
10.37934/arfmts.117.2.6070 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85196313804&doi=10.37934%2farfmts.117.2.6070&partnerID=40&md5=7c7aa1823fb995e715d9b331d079a044 |
description |
Accurate prediction of power demand and generation is crucial for modern energy systems to efficiently allocate resources and facilitate energy trading. The integration of artificial intelligence (AI) and machine learning techniques has significantly improved the precision of power forecasting. This study focuses on the application of Artificial Neural Networks (ANN) for forecasting power generation in the Eastern Coast region of Malaysia, with a specific emphasis on solar power. The research methodology involves collecting and analyzing historical power data, weather data, and relevant variables. ANN models are trained, validated, and tested on a selected power grid to assess their accuracy and predictive capabilities. The expected outcomes aim to include the development of a precise power generation forecasting model, providing valuable insights for decision-makers to optimize energy operations and seamlessly integrate renewable sources. Additionally, the study explores potential challenges, limitations, and best practices associated with ANN-based power forecasting. The dataset covers the period from 2020 to 2023, with variables such as average output power, ambient temperature, PV module temperature, global horizontal irradiance, and wind speed recorded at 30-minute intervals. The architecture of the ANN model, implemented using the Keras framework, is described as a Sequential model with layers utilizing the 'ReLU' activation function. Model evaluation employs metrics like root mean square error (RMSE), mean square error (MSE), and mean absolute error (MAE) on the test set, offering insights into the model's overall fit, average deviation, and sensitivity to outliers. Results reveal strong correlations between PV module temperature, irradiance, and AC power generated. © 2024, Semarak Ilmu Publishing. All rights reserved. |
publisher |
Semarak Ilmu Publishing |
issn |
22897879 |
language |
English |
format |
Article |
accesstype |
All Open Access; Hybrid Gold Open Access |
record_format |
scopus |
collection |
Scopus |
_version_ |
1809678006159933440 |